def main(): seed = 42 np.random.seed(seed) current_dir = os.path.dirname(__file__) sys.path.append(os.path.join(current_dir, '..')) current_dir = current_dir if current_dir is not '' else '.' img_dir_path = 'jpg' txt_dir_path = 'flowers/text_c10' model_dir_path = current_dir + '/models' img_width = 32 img_height = 32 img_channels = 3 from dcgan import DCGan from img_cap_loader import load_normalized_img_and_its_text image_label_pairs = load_normalized_img_and_its_text(img_dir_path, txt_dir_path, img_width=img_width, img_height=img_height) shuffle(image_label_pairs) gan = DCGan() gan.img_width = img_width gan.img_height = img_height gan.img_channels = img_channels gan.random_input_dim = 200 gan.glove_source_dir_path = './very_large_data' batch_size = 16 epochs = 300 gan.fit(model_dir_path=model_dir_path, image_label_pairs=image_label_pairs, snapshot_dir_path=current_dir + '/data/snapshots', snapshot_interval=100, batch_size=batch_size, epochs=epochs)
gan.img_width = img_width gan.img_height = img_height gan.img_channels = img_channels gan.random_input_dim = 200 gan.glove_source_dir_path = './very_large_data' batch_size = 5 epochs = 2000 if mode == 'train': #training start_time = time.time() logs = gan.fit(model_dir_path=model_dir_path, image_label_pairs=image_label_pairs, snapshot_dir_path=current_dir + snapshots_dir_path, snapshot_interval=10, batch_size=batch_size, epochs=epochs) from training_plot import on_epoch_end on_epoch_end(logs) end_time = time.time() print(end_time - start_time) elif mode == 'test': #testing from dcgan import DCGan gan = DCGan() gan.load_model(model_dir_path)