Esempio n. 1
0
def main():
    seed = 42
    np.random.seed(seed)

    current_dir = os.path.dirname(__file__)
    sys.path.append(os.path.join(current_dir, '..'))
    current_dir = current_dir if current_dir is not '' else '.'

    img_dir_path = 'jpg'
    txt_dir_path = 'flowers/text_c10'
    model_dir_path = current_dir + '/models'

    img_width = 32
    img_height = 32
    img_channels = 3

    from dcgan import DCGan
    from img_cap_loader import load_normalized_img_and_its_text

    image_label_pairs = load_normalized_img_and_its_text(img_dir_path,
                                                         txt_dir_path,
                                                         img_width=img_width,
                                                         img_height=img_height)

    shuffle(image_label_pairs)

    gan = DCGan()
    gan.img_width = img_width
    gan.img_height = img_height
    gan.img_channels = img_channels
    gan.random_input_dim = 200
    gan.glove_source_dir_path = './very_large_data'

    batch_size = 16
    epochs = 300
    gan.fit(model_dir_path=model_dir_path,
            image_label_pairs=image_label_pairs,
            snapshot_dir_path=current_dir + '/data/snapshots',
            snapshot_interval=100,
            batch_size=batch_size,
            epochs=epochs)
Esempio n. 2
0
img_width = 64
img_height = 64
img_channels = 3

from dcgan import DCGan

image_label_pairs = load_normalized_img_and_text(img_dir_path,
                                                 txt_dir_path,
                                                 img_width=img_width,
                                                 img_height=img_height)

shuffle(image_label_pairs)

gan = DCGan()
gan.img_width = img_width
gan.img_height = img_height
gan.img_channels = img_channels
gan.random_input_dim = 200
gan.glove_source_dir_path = './very_large_data'

batch_size = 5
epochs = 2000

if mode == 'train':
    #training
    start_time = time.time()

    logs = gan.fit(model_dir_path=model_dir_path,
                   image_label_pairs=image_label_pairs,
                   snapshot_dir_path=current_dir + snapshots_dir_path,
                   snapshot_interval=10,