Esempio n. 1
0
 def em(i, q_dyn_natparam, q_X_natparam, _, curr_elbo):
     q_X_ = stats.LDS(q_X_natparam, 'natural')
     ess = q_X_.expected_sufficient_statistics()
     batch_size = T.shape(ess)[0]
     yyT = ess[..., :-1, ds:2 * ds, ds:2 * ds]
     xxT = ess[..., :-1, :ds, :ds]
     yxT = ess[..., :-1, ds:2 * ds, :ds]
     x = ess[..., :-1, -1, :ds]
     y = ess[..., :-1, -1, ds:2 * ds]
     xaT = T.outer(x, a)
     yaT = T.outer(y, a)
     xaxaT = T.concatenate([
         T.concatenate([xxT, xaT], -1),
         T.concatenate([T.matrix_transpose(xaT), aaT], -1),
     ], -2)
     ess = [
         yyT,
         T.concatenate([yxT, yaT], -1), xaxaT,
         T.ones([batch_size, self.horizon - 1])
     ]
     q_dyn_natparam = [
         T.sum(a, [0]) * data_strength + b
         for a, b in zip(ess, initial_dyn_natparam)
     ]
     q_dyn_ = stats.MNIW(q_dyn_natparam, 'natural')
     q_stats = q_dyn_.expected_sufficient_statistics()
     p_X = stats.LDS((q_stats, state_prior, None,
                      q_A.expected_value(), self.horizon))
     q_X_ = stats.LDS((q_stats, state_prior, q_X,
                       q_A.expected_value(), self.horizon))
     elbo = (T.sum(stats.kl_divergence(q_X_, p_X)) +
             T.sum(stats.kl_divergence(q_dyn_, prior_dyn)))
     return i + 1, q_dyn_.get_parameters(
         'natural'), q_X_.get_parameters('natural'), curr_elbo, elbo
Esempio n. 2
0
    def _sample(self, num_samples):
        sigma, mu = self.natural_to_regular(self.regular_to_natural(self.get_parameters('regular')))

        L = T.cholesky(sigma)
        sample_shape = T.concat([[num_samples], T.shape(mu)], 0)
        noise = T.random_normal(sample_shape)
        L = T.tile(L[None], T.concat([[num_samples], T.ones([T.rank(sigma)], dtype=np.int32)]))
        return mu[None] + T.matmul(L, noise[..., None])[..., 0]
Esempio n. 3
0
 def initialize_objective(self):
     H, ds, da = self.horizon, self.ds, self.da
     if self.time_varying:
         A = T.concatenate(
             [T.eye(ds, batch_shape=[H - 1]),
              T.zeros([H - 1, ds, da])], -1)
         self.A_prior = stats.MNIW([
             2 * T.eye(ds, batch_shape=[H - 1]), A,
             T.eye(ds + da, batch_shape=[H - 1]),
             T.to_float(ds + 2) * T.ones([H - 1])
         ],
                                   parameter_type='regular')
         self.A_variational = stats.MNIW(list(
             map(
                 T.variable,
                 stats.MNIW.regular_to_natural([
                     2 * T.eye(ds, batch_shape=[H - 1]),
                     A + 1e-2 * T.random_normal([H - 1, ds, ds + da]),
                     T.eye(ds + da, batch_shape=[H - 1]),
                     T.to_float(ds + 2) * T.ones([H - 1])
                 ]))),
                                         parameter_type='natural')
     else:
         A = T.concatenate([T.eye(ds), T.zeros([ds, da])], -1)
         self.A_prior = stats.MNIW(
             [2 * T.eye(ds), A,
              T.eye(ds + da),
              T.to_float(ds + 2)],
             parameter_type='regular')
         self.A_variational = stats.MNIW(list(
             map(
                 T.variable,
                 stats.MNIW.regular_to_natural([
                     2 * T.eye(ds),
                     A + 1e-2 * T.random_normal([ds, ds + da]),
                     T.eye(ds + da),
                     T.to_float(ds + 2)
                 ]))),
                                         parameter_type='natural')
Esempio n. 4
0
 def kl_divergence(self, q_X, q_A, _):
     # q_Xt - [N, H, ds]
     # q_At - [N, H, da]
     if (q_X, q_A) not in self.cache:
         info = {}
         if self.smooth:
             state_prior = stats.GaussianScaleDiag([
                 T.ones(self.ds),
                 T.zeros(self.ds)
             ])
             p_X = stats.LDS(
                 (self.sufficient_statistics(), state_prior, None, q_A.expected_value(), self.horizon),
             'internal')
             kl = T.mean(stats.kl_divergence(q_X, p_X), axis=0)
             Q = self.get_dynamics()[1]
             info['model-stdev'] = T.sqrt(T.matrix_diag_part(Q))
         else:
             q_Xt = q_X.__class__([
                 q_X.get_parameters('regular')[0][:, :-1],
                 q_X.get_parameters('regular')[1][:, :-1],
             ])
             q_At = q_A.__class__([
                 q_A.get_parameters('regular')[0][:, :-1],
                 q_A.get_parameters('regular')[1][:, :-1],
             ])
             p_Xt1 = self.forward(q_Xt, q_At)
             q_Xt1 = q_X.__class__([
                 q_X.get_parameters('regular')[0][:, 1:],
                 q_X.get_parameters('regular')[1][:, 1:],
             ])
             rmse = T.sqrt(T.sum(T.square(q_Xt1.get_parameters('regular')[1] - p_Xt1.get_parameters('regular')[1]), axis=-1))
             kl = T.mean(T.sum(stats.kl_divergence(q_Xt1, p_Xt1), axis=-1), axis=0)
             Q = self.get_dynamics()[1]
             model_stdev = T.sqrt(T.matrix_diag_part(Q))
             info['rmse'] = rmse
             info['model-stdev'] = model_stdev
         self.cache[(q_X, q_A)] = kl, info
     return self.cache[(q_X, q_A)]
Esempio n. 5
0
    def posterior_dynamics(self,
                           q_X,
                           q_A,
                           data_strength=1.0,
                           max_iter=200,
                           tol=1e-3):
        if self.smooth:
            if self.time_varying:
                prior_dyn = stats.MNIW(
                    self.A_variational.get_parameters('natural'), 'natural')
            else:
                natparam = self.A_variational.get_parameters('natural')
                prior_dyn = stats.MNIW([
                    T.tile(natparam[0][None], [self.horizon - 1, 1, 1]),
                    T.tile(natparam[1][None], [self.horizon - 1, 1, 1]),
                    T.tile(natparam[2][None], [self.horizon - 1, 1, 1]),
                    T.tile(natparam[3][None], [self.horizon - 1]),
                ], 'natural')
            state_prior = stats.Gaussian([T.eye(self.ds), T.zeros(self.ds)])
            aaT, a = stats.Gaussian.unpack(
                q_A.expected_sufficient_statistics())
            aaT, a = aaT[:, :-1], a[:, :-1]
            ds, da = self.ds, self.da

            initial_dyn_natparam = prior_dyn.get_parameters('natural')
            initial_X_natparam = stats.LDS(
                (self.sufficient_statistics(), state_prior, q_X,
                 q_A.expected_value(), self.horizon),
                'internal').get_parameters('natural')

            def em(i, q_dyn_natparam, q_X_natparam, _, curr_elbo):
                q_X_ = stats.LDS(q_X_natparam, 'natural')
                ess = q_X_.expected_sufficient_statistics()
                batch_size = T.shape(ess)[0]
                yyT = ess[..., :-1, ds:2 * ds, ds:2 * ds]
                xxT = ess[..., :-1, :ds, :ds]
                yxT = ess[..., :-1, ds:2 * ds, :ds]
                x = ess[..., :-1, -1, :ds]
                y = ess[..., :-1, -1, ds:2 * ds]
                xaT = T.outer(x, a)
                yaT = T.outer(y, a)
                xaxaT = T.concatenate([
                    T.concatenate([xxT, xaT], -1),
                    T.concatenate([T.matrix_transpose(xaT), aaT], -1),
                ], -2)
                ess = [
                    yyT,
                    T.concatenate([yxT, yaT], -1), xaxaT,
                    T.ones([batch_size, self.horizon - 1])
                ]
                q_dyn_natparam = [
                    T.sum(a, [0]) * data_strength + b
                    for a, b in zip(ess, initial_dyn_natparam)
                ]
                q_dyn_ = stats.MNIW(q_dyn_natparam, 'natural')
                q_stats = q_dyn_.expected_sufficient_statistics()
                p_X = stats.LDS((q_stats, state_prior, None,
                                 q_A.expected_value(), self.horizon))
                q_X_ = stats.LDS((q_stats, state_prior, q_X,
                                  q_A.expected_value(), self.horizon))
                elbo = (T.sum(stats.kl_divergence(q_X_, p_X)) +
                        T.sum(stats.kl_divergence(q_dyn_, prior_dyn)))
                return i + 1, q_dyn_.get_parameters(
                    'natural'), q_X_.get_parameters('natural'), curr_elbo, elbo

            def cond(i, _, __, prev_elbo, curr_elbo):
                with T.core.control_dependencies([T.core.print(curr_elbo)]):
                    prev_elbo = T.core.identity(prev_elbo)
                return T.logical_and(
                    T.abs(curr_elbo - prev_elbo) > tol, i < max_iter)

            result = T.while_loop(
                cond,
                em, [
                    0, initial_dyn_natparam, initial_X_natparam,
                    T.constant(-np.inf),
                    T.constant(0.)
                ],
                back_prop=False)
            pd = stats.MNIW(result[1], 'natural')
            sigma, mu = pd.expected_value()
            q_X = stats.LDS(result[2], 'natural')
            return ((mu, sigma), pd.expected_sufficient_statistics()), (q_X,
                                                                        q_A)
        else:
            q_Xt = q_X.__class__([
                q_X.get_parameters('regular')[0][:, :-1],
                q_X.get_parameters('regular')[1][:, :-1],
            ])
            q_At = q_A.__class__([
                q_A.get_parameters('regular')[0][:, :-1],
                q_A.get_parameters('regular')[1][:, :-1],
            ])
            q_Xt1 = q_X.__class__([
                q_X.get_parameters('regular')[0][:, 1:],
                q_X.get_parameters('regular')[1][:, 1:],
            ])
            (XtAt_XtAtT, XtAt), (Xt1_Xt1T,
                                 Xt1) = self.get_statistics(q_Xt, q_At, q_Xt1)
            batch_size = T.shape(XtAt)[0]
            ess = [
                Xt1_Xt1T,
                T.einsum('nha,nhb->nhba', XtAt, Xt1), XtAt_XtAtT,
                T.ones([batch_size, self.horizon - 1])
            ]
            if self.time_varying:
                posterior = stats.MNIW([
                    T.sum(a, [0]) * data_strength + b for a, b in zip(
                        ess, self.A_variational.get_parameters('natural'))
                ], 'natural')
            else:
                posterior = stats.MNIW([
                    T.sum(a, [0]) * data_strength + b[None] for a, b in zip(
                        ess, self.A_variational.get_parameters('natural'))
                ], 'natural')
            Q, A = posterior.expected_value()
            return (A, Q), q_X
Esempio n. 6
0
 def kl_divergence(self, q_X, q_A, num_data):
     if (q_X, q_A) not in self.cache:
         if self.smooth:
             state_prior = stats.GaussianScaleDiag(
                 [T.ones(self.ds), T.zeros(self.ds)])
             self.p_X = stats.LDS(
                 (self.sufficient_statistics(), state_prior, None,
                  q_A.expected_value(), self.horizon), 'internal')
             local_kl = stats.kl_divergence(q_X, self.p_X)
             if self.time_varying:
                 global_kl = T.sum(
                     stats.kl_divergence(self.A_variational, self.A_prior))
             else:
                 global_kl = stats.kl_divergence(self.A_variational,
                                                 self.A_prior)
             prior_kl = T.mean(local_kl,
                               axis=0) + global_kl / T.to_float(num_data)
             A, Q = self.get_dynamics()
             model_stdev = T.sqrt(T.matrix_diag_part(Q))
             self.cache[(q_X, q_A)] = prior_kl, {
                 'local-kl': local_kl,
                 'global-kl': global_kl,
                 'model-stdev': model_stdev,
             }
         else:
             q_Xt = q_X.__class__([
                 q_X.get_parameters('regular')[0][:, :-1],
                 q_X.get_parameters('regular')[1][:, :-1],
             ])
             q_At = q_A.__class__([
                 q_A.get_parameters('regular')[0][:, :-1],
                 q_A.get_parameters('regular')[1][:, :-1],
             ])
             p_Xt1 = self.forward(q_Xt, q_At)
             q_Xt1 = q_X.__class__([
                 q_X.get_parameters('regular')[0][:, 1:],
                 q_X.get_parameters('regular')[1][:, 1:],
             ])
             num_data = T.to_float(num_data)
             rmse = T.sqrt(
                 T.sum(T.square(
                     q_Xt1.get_parameters('regular')[1] -
                     p_Xt1.get_parameters('regular')[1]),
                       axis=-1))
             A, Q = self.get_dynamics()
             model_stdev = T.sqrt(T.matrix_diag_part(Q))
             local_kl = T.sum(stats.kl_divergence(q_Xt1, p_Xt1), axis=1)
             if self.time_varying:
                 global_kl = T.sum(
                     stats.kl_divergence(self.A_variational, self.A_prior))
             else:
                 global_kl = stats.kl_divergence(self.A_variational,
                                                 self.A_prior)
             self.cache[(q_X, q_A)] = (T.mean(local_kl, axis=0) +
                                       global_kl / T.to_float(num_data), {
                                           'rmse': rmse,
                                           'model-stdev': model_stdev,
                                           'local-kl': local_kl,
                                           'global-kl': global_kl
                                       })
     return self.cache[(q_X, q_A)]
Esempio n. 7
0
 def kl_gradients(self, q_X, q_A, _, num_data):
     if self.smooth:
         ds = self.ds
         ess = q_X.expected_sufficient_statistics()
         yyT = ess[..., :-1, ds:2 * ds, ds:2 * ds]
         xxT = ess[..., :-1, :ds, :ds]
         yxT = ess[..., :-1, ds:2 * ds, :ds]
         aaT, a = stats.Gaussian.unpack(
             q_A.expected_sufficient_statistics())
         aaT, a = aaT[:, :-1], a[:, :-1]
         x = ess[..., :-1, -1, :ds]
         y = ess[..., :-1, -1, ds:2 * ds]
         xaT = T.outer(x, a)
         yaT = T.outer(y, a)
         xaxaT = T.concatenate([
             T.concatenate([xxT, xaT], -1),
             T.concatenate([T.matrix_transpose(xaT), aaT], -1),
         ], -2)
         batch_size = T.shape(ess)[0]
         num_batches = T.to_float(num_data) / T.to_float(batch_size)
         ess = [
             yyT,
             T.concatenate([yxT, yaT], -1), xaxaT,
             T.ones([batch_size, self.horizon - 1])
         ]
     else:
         q_Xt = q_X.__class__([
             q_X.get_parameters('regular')[0][:, :-1],
             q_X.get_parameters('regular')[1][:, :-1],
         ])
         q_At = q_A.__class__([
             q_A.get_parameters('regular')[0][:, :-1],
             q_A.get_parameters('regular')[1][:, :-1],
         ])
         q_Xt1 = q_X.__class__([
             q_X.get_parameters('regular')[0][:, 1:],
             q_X.get_parameters('regular')[1][:, 1:],
         ])
         (XtAt_XtAtT, XtAt), (Xt1_Xt1T,
                              Xt1) = self.get_statistics(q_Xt, q_At, q_Xt1)
         batch_size = T.shape(XtAt)[0]
         num_batches = T.to_float(num_data) / T.to_float(batch_size)
         ess = [
             Xt1_Xt1T,
             T.einsum('nha,nhb->nhba', XtAt, Xt1), XtAt_XtAtT,
             T.ones([batch_size, self.horizon - 1])
         ]
     if self.time_varying:
         ess = [
             T.sum(ess[0], [0]),
             T.sum(ess[1], [0]),
             T.sum(ess[2], [0]),
             T.sum(ess[3], [0]),
         ]
     else:
         ess = [
             T.sum(ess[0], [0, 1]),
             T.sum(ess[1], [0, 1]),
             T.sum(ess[2], [0, 1]),
             T.sum(ess[3], [0, 1]),
         ]
     return [
         -(a + num_batches * b - c) / T.to_float(num_data)
         for a, b, c in zip(
             self.A_prior.get_parameters('natural'),
             ess,
             self.A_variational.get_parameters('natural'),
         )
     ]
Esempio n. 8
0
 def kl_divergence(self, q_X, q_A, num_data):
     mu_shape = T.shape(q_X.get_parameters('regular')[1])
     p_X = stats.GaussianScaleDiag([T.ones(mu_shape), T.zeros(mu_shape)])
     return T.mean(T.sum(stats.kl_divergence(q_X, p_X), -1), 0), {}
Esempio n. 9
0
            np.random.multivariate_normal(
                mean=np.zeros([D]), cov=np.eye(D) * 20, size=[K]),
            np.ones(K),
            np.ones(K) * (D + 1)
        ])))

sigma, mu = Gaussian(q_theta.expected_sufficient_statistics(),
                     parameter_type='natural').get_parameters('regular')
alpha = Categorical(q_pi.expected_sufficient_statistics(),
                    parameter_type='natural').get_parameters('regular')

pi_cmessage = q_pi.expected_sufficient_statistics()
x_tmessage = NIW.pack([
    T.outer(X, X),
    X,
    T.ones([batch_size]),
    T.ones([batch_size]),
])
x_stats = Gaussian.pack([
    T.outer(X, X),
    X,
])
theta_cmessage = q_theta.expected_sufficient_statistics()

num_batches = N / T.to_float(batch_size)
nat_scale = 10.0

parent_z = q_pi.expected_sufficient_statistics()[None]
new_z = T.einsum('iab,jab->ij', x_tmessage, theta_cmessage) + parent_z
q_z = Categorical(new_z - T.logsumexp(new_z, -1)[..., None],
                  parameter_type='natural')
Esempio n. 10
0
def one(shape):
    return T.ones(shape)
Esempio n. 11
0
q_z = make_variable(
    Categorical(
        np.array(np.random.dirichlet([100.0] * K,
                                     size=[N])).astype(T.floatx())))

sigma, mu = Gaussian(q_theta.expected_sufficient_statistics(),
                     parameter_type='natural').get_parameters('regular')
alpha = Categorical(q_pi.expected_sufficient_statistics(),
                    parameter_type='natural').get_parameters('regular')

pi_cmessage = q_pi.expected_sufficient_statistics()
z_pmessage = q_z.expected_sufficient_statistics()
x_tmessage = NIW.pack([
    T.outer(X, X),
    X,
    T.ones(N),
    T.ones(N),
])
x_stats = Gaussian.pack([
    T.outer(X, X),
    X,
])
theta_cmessage = q_theta.expected_sufficient_statistics()

new_pi = p_pi.get_parameters('natural') + T.sum(z_pmessage, 0)
parent_pi = p_pi.get_parameters('natural')
pi_update = T.assign(q_pi.get_parameters('natural'), new_pi)
l_pi = T.sum(kl_divergence(q_pi, p_pi))

new_theta = T.einsum('ia,ibc->abc', z_pmessage,
                     x_tmessage) + p_theta.get_parameters('natural')[None]
Esempio n. 12
0
 def activate(self, X):
     shape = T.shape(X)
     return stats.NIW.pack(
         [T.outer(X, X), X,
          T.ones(shape[:-1]),
          T.ones(shape[:-1])])