def kl_divergence(self, q_X, q_A, _): # q_Xt - [N, H, ds] # q_At - [N, H, da] if (q_X, q_A) not in self.cache: q_Xt = q_X.__class__([ q_X.get_parameters('regular')[0][:, :-1], q_X.get_parameters('regular')[1][:, :-1], ]) q_At = q_A.__class__([ q_A.get_parameters('regular')[0][:, :-1], q_A.get_parameters('regular')[1][:, :-1], ]) p_Xt1 = self.forward(q_Xt, q_At) q_Xt1 = q_X.__class__([ q_X.get_parameters('regular')[0][:, 1:], q_X.get_parameters('regular')[1][:, 1:], ]) rmse = T.sqrt( T.sum(T.square( q_Xt1.get_parameters('regular')[1] - p_Xt1.get_parameters('regular')[1]), axis=-1)) model_stdev = T.sqrt(p_Xt1.get_parameters('regular')[0]) encoding_stdev = T.sqrt(q_Xt1.get_parameters('regular')[0]) self.cache[(q_X, q_A)] = T.sum(stats.kl_divergence(q_Xt1, p_Xt1), axis=-1), { 'rmse': rmse, 'encoding-stdev': encoding_stdev, 'model-stdev': model_stdev } return self.cache[(q_X, q_A)]
def kl_divergence(self, q_X, q_A, _): # q_Xt - [N, H, ds] # q_At - [N, H, da] if (q_X, q_A) not in self.cache: info = {} if self.smooth: state_prior = stats.GaussianScaleDiag([ T.ones(self.ds), T.zeros(self.ds) ]) p_X = stats.LDS( (self.sufficient_statistics(), state_prior, None, q_A.expected_value(), self.horizon), 'internal') kl = T.mean(stats.kl_divergence(q_X, p_X), axis=0) Q = self.get_dynamics()[1] info['model-stdev'] = T.sqrt(T.matrix_diag_part(Q)) else: q_Xt = q_X.__class__([ q_X.get_parameters('regular')[0][:, :-1], q_X.get_parameters('regular')[1][:, :-1], ]) q_At = q_A.__class__([ q_A.get_parameters('regular')[0][:, :-1], q_A.get_parameters('regular')[1][:, :-1], ]) p_Xt1 = self.forward(q_Xt, q_At) q_Xt1 = q_X.__class__([ q_X.get_parameters('regular')[0][:, 1:], q_X.get_parameters('regular')[1][:, 1:], ]) rmse = T.sqrt(T.sum(T.square(q_Xt1.get_parameters('regular')[1] - p_Xt1.get_parameters('regular')[1]), axis=-1)) kl = T.mean(T.sum(stats.kl_divergence(q_Xt1, p_Xt1), axis=-1), axis=0) Q = self.get_dynamics()[1] model_stdev = T.sqrt(T.matrix_diag_part(Q)) info['rmse'] = rmse info['model-stdev'] = model_stdev self.cache[(q_X, q_A)] = kl, info return self.cache[(q_X, q_A)]
def kl_divergence(self, q_X, q_A, num_data): if (q_X, q_A) not in self.cache: if self.smooth: state_prior = stats.GaussianScaleDiag( [T.ones(self.ds), T.zeros(self.ds)]) self.p_X = stats.LDS( (self.sufficient_statistics(), state_prior, None, q_A.expected_value(), self.horizon), 'internal') local_kl = stats.kl_divergence(q_X, self.p_X) if self.time_varying: global_kl = T.sum( stats.kl_divergence(self.A_variational, self.A_prior)) else: global_kl = stats.kl_divergence(self.A_variational, self.A_prior) prior_kl = T.mean(local_kl, axis=0) + global_kl / T.to_float(num_data) A, Q = self.get_dynamics() model_stdev = T.sqrt(T.matrix_diag_part(Q)) self.cache[(q_X, q_A)] = prior_kl, { 'local-kl': local_kl, 'global-kl': global_kl, 'model-stdev': model_stdev, } else: q_Xt = q_X.__class__([ q_X.get_parameters('regular')[0][:, :-1], q_X.get_parameters('regular')[1][:, :-1], ]) q_At = q_A.__class__([ q_A.get_parameters('regular')[0][:, :-1], q_A.get_parameters('regular')[1][:, :-1], ]) p_Xt1 = self.forward(q_Xt, q_At) q_Xt1 = q_X.__class__([ q_X.get_parameters('regular')[0][:, 1:], q_X.get_parameters('regular')[1][:, 1:], ]) num_data = T.to_float(num_data) rmse = T.sqrt( T.sum(T.square( q_Xt1.get_parameters('regular')[1] - p_Xt1.get_parameters('regular')[1]), axis=-1)) A, Q = self.get_dynamics() model_stdev = T.sqrt(T.matrix_diag_part(Q)) local_kl = T.sum(stats.kl_divergence(q_Xt1, p_Xt1), axis=1) if self.time_varying: global_kl = T.sum( stats.kl_divergence(self.A_variational, self.A_prior)) else: global_kl = stats.kl_divergence(self.A_variational, self.A_prior) self.cache[(q_X, q_A)] = (T.mean(local_kl, axis=0) + global_kl / T.to_float(num_data), { 'rmse': rmse, 'model-stdev': model_stdev, 'local-kl': local_kl, 'global-kl': global_kl }) return self.cache[(q_X, q_A)]
def log_likelihood(self, batch_z, batch): x = Vector(self.input_size, placeholder=batch, is_input=False) mu, sigma = (x >> self.q_network).get_graph_outputs() sigma = T.sqrt(T.exp(sigma)) return T.mean( log_normal(batch_z, mu, sigma, self.embedding_size, dim=2))
def sample_z(self, batch, batch_noise, feed_dict={}): x = Vector(self.input_size, placeholder=batch, is_input=False) mu, sigma = (x >> self.q_network).get_graph_outputs() sigma = T.sqrt(T.exp(sigma)) return mu + sigma * batch_noise