def do_shape_check(channel, control_region_1, control_region_2, variable, normalisation, title, x_title, y_title, x_limits, y_limits,
                   name_region_1='conversions' , name_region_2='non-isolated electrons', name_region_3='fit results', rebin=1):
    global b_tag_bin
    # QCD shape comparison
    if channel == 'electron':
        histograms = get_histograms_from_files([control_region_1, control_region_2], histogram_files)
        
        region_1 = histograms[channel][control_region_1].Clone() - histograms['TTJet'][control_region_1].Clone() - histograms['V+Jets'][control_region_1].Clone() - histograms['SingleTop'][control_region_1].Clone()
        region_2 = histograms[channel][control_region_2].Clone() - histograms['TTJet'][control_region_2].Clone() - histograms['V+Jets'][control_region_2].Clone() - histograms['SingleTop'][control_region_2].Clone()
        
        region_1.Rebin(rebin)
        region_2.Rebin(rebin)
        
        histogram_properties = Histogram_properties()
        histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_' + b_tag_bin
        histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
        histogram_properties.x_axis_title = x_title
        histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
        histogram_properties.x_limits = x_limits
        histogram_properties.y_limits = y_limits[0]
        histogram_properties.mc_error = 0.0
        histogram_properties.legend_location = 'upper right'
        make_control_region_comparison(region_1, region_2,
                                       name_region_1=name_region_1, name_region_2=name_region_2,
                                       histogram_properties=histogram_properties, save_folder=output_folder)
        
        # QCD shape comparison to fit results
        histograms = get_histograms_from_files([control_region_1], histogram_files)
        
        region_1_tmp = histograms[channel][control_region_1].Clone() - histograms['TTJet'][control_region_1].Clone() - histograms['V+Jets'][control_region_1].Clone() - histograms['SingleTop'][control_region_1].Clone()
        region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable])
        
        fit_results_QCD = normalisation[variable]['QCD']
        region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges_vis[variable])
        
        histogram_properties = Histogram_properties()
        histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_conversions_' + b_tag_bin
        histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
        histogram_properties.x_axis_title = x_title
        histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
        histogram_properties.x_limits = x_limits
        histogram_properties.y_limits = y_limits[1]
        histogram_properties.mc_error = 0.0
        histogram_properties.legend_location = 'upper right'
        make_control_region_comparison(region_1, region_2,
                                       name_region_1=name_region_1, name_region_2=name_region_3,
                                       histogram_properties=histogram_properties, save_folder=output_folder)
    
    histograms = get_histograms_from_files([control_region_2], histogram_files)
    
    region_1_tmp = histograms[channel][control_region_2].Clone() - histograms['TTJet'][control_region_2].Clone() - histograms['V+Jets'][control_region_2].Clone() - histograms['SingleTop'][control_region_2].Clone()
    region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable])    
    
    fit_results_QCD = normalisation[variable]['QCD']
    region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges_vis[variable])
    
    histogram_properties = Histogram_properties()
    histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_noniso_' + b_tag_bin
    histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
    histogram_properties.x_axis_title = x_title
    histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
    histogram_properties.x_limits = x_limits
    histogram_properties.y_limits = y_limits[1]
    histogram_properties.mc_error = 0.0
    histogram_properties.legend_location = 'upper right'
    make_control_region_comparison(region_1, region_2,
                                   name_region_1=name_region_2, name_region_2=name_region_3,
                                   histogram_properties=histogram_properties, save_folder=output_folder)
Esempio n. 2
0
# plot with matplotlib
plot_with_plotting_script = True

if plot_with_plotting_script:
	properties = Histogram_properties()
	properties.name = 'matplotlib_hist'
	properties.x_axis_title = 'Mass'
	properties.y_axis_title = 'Events'
	make_data_mc_comparison_plot( [h3, h1, h2], ['data', 'background', 'signal'], ['black', 'green', 'red'], properties )
	
	properties.name += '_with_ratio'
	make_data_mc_comparison_plot( [h3, h1, h2], ['data', 'background', 'signal'], ['black', 'green', 'red'], properties, show_ratio = True )

	properties.name = 'matplotlib_hist_comparison'
	properties.y_limits = [0, 0.4]
	make_control_region_comparison( h1, h2, 'background', 'signal', properties )

else:
	fig = plt.figure(figsize=(14, 10), dpi=300)#, facecolor='white')
	axes = plt.axes()
	axes.xaxis.set_minor_locator(AutoMinorLocator())
	axes.yaxis.set_minor_locator(AutoMinorLocator())
	# axes.yaxis.set_major_locator(MultipleLocator(20))
	axes.tick_params(which='major', labelsize=15, length=8)
	axes.tick_params(which='minor', length=4)
	rplt.errorbar(h3, xerr=False, emptybins=False, axes=axes, zorder = 4)
	rplt.hist(stack, stacked=True, axes=axes, zorder = 1)
	plt.xlabel('Mass', position=(1., 0.), ha='right')
	plt.ylabel('Events', position=(0., 1.), va='bottom', ha='right')
	plt.legend(numpoints=1)
	plt.tight_layout()
def do_shape_check(channel,
                   control_region_1,
                   control_region_2,
                   variable,
                   normalisation,
                   title,
                   x_title,
                   y_title,
                   x_limits,
                   y_limits,
                   name_region_1='conversions',
                   name_region_2='non-isolated electrons',
                   name_region_3='fit results',
                   rebin=1):
    global b_tag_bin
    # QCD shape comparison
    if channel == 'electron':
        histograms = get_histograms_from_files(
            [control_region_1, control_region_2], histogram_files)

        region_1 = histograms[channel][control_region_1].Clone(
        ) - histograms['TTJet'][control_region_1].Clone(
        ) - histograms['V+Jets'][control_region_1].Clone(
        ) - histograms['SingleTop'][control_region_1].Clone()
        region_2 = histograms[channel][control_region_2].Clone(
        ) - histograms['TTJet'][control_region_2].Clone(
        ) - histograms['V+Jets'][control_region_2].Clone(
        ) - histograms['SingleTop'][control_region_2].Clone()

        region_1.Rebin(rebin)
        region_2.Rebin(rebin)

        histogram_properties = Histogram_properties()
        histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_' + b_tag_bin
        histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
        histogram_properties.x_axis_title = x_title
        histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
        histogram_properties.x_limits = x_limits
        histogram_properties.y_limits = y_limits[0]
        histogram_properties.mc_error = 0.0
        histogram_properties.legend_location = 'upper right'
        make_control_region_comparison(
            region_1,
            region_2,
            name_region_1=name_region_1,
            name_region_2=name_region_2,
            histogram_properties=histogram_properties,
            save_folder=output_folder)

        # QCD shape comparison to fit results
        histograms = get_histograms_from_files([control_region_1],
                                               histogram_files)

        region_1_tmp = histograms[channel][control_region_1].Clone(
        ) - histograms['TTJet'][control_region_1].Clone(
        ) - histograms['V+Jets'][control_region_1].Clone(
        ) - histograms['SingleTop'][control_region_1].Clone()
        region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable])

        fit_results_QCD = normalisation[variable]['QCD']
        region_2 = value_error_tuplelist_to_hist(fit_results_QCD,
                                                 bin_edges_vis[variable])

        histogram_properties = Histogram_properties()
        histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_conversions_' + b_tag_bin
        histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
        histogram_properties.x_axis_title = x_title
        histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
        histogram_properties.x_limits = x_limits
        histogram_properties.y_limits = y_limits[1]
        histogram_properties.mc_error = 0.0
        histogram_properties.legend_location = 'upper right'
        make_control_region_comparison(
            region_1,
            region_2,
            name_region_1=name_region_1,
            name_region_2=name_region_3,
            histogram_properties=histogram_properties,
            save_folder=output_folder)

    histograms = get_histograms_from_files([control_region_2], histogram_files)

    region_1_tmp = histograms[channel][control_region_2].Clone(
    ) - histograms['TTJet'][control_region_2].Clone(
    ) - histograms['V+Jets'][control_region_2].Clone(
    ) - histograms['SingleTop'][control_region_2].Clone()
    region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable])

    fit_results_QCD = normalisation[variable]['QCD']
    region_2 = value_error_tuplelist_to_hist(fit_results_QCD,
                                             bin_edges_vis[variable])

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_noniso_' + b_tag_bin
    histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
    histogram_properties.x_axis_title = x_title
    histogram_properties.y_axis_title = 'arbitrary units/(0.1)'
    histogram_properties.x_limits = x_limits
    histogram_properties.y_limits = y_limits[1]
    histogram_properties.mc_error = 0.0
    histogram_properties.legend_location = 'upper right'
    make_control_region_comparison(region_1,
                                   region_2,
                                   name_region_1=name_region_2,
                                   name_region_2=name_region_3,
                                   histogram_properties=histogram_properties,
                                   save_folder=output_folder)
if plot_with_plotting_script:
    properties = Histogram_properties()
    properties.name = "matplotlib_hist"
    properties.x_axis_title = "Mass"
    properties.y_axis_title = "Events"
    make_data_mc_comparison_plot([h3, h1, h2], ["data", "background", "signal"], ["black", "green", "red"], properties)

    properties.name += "_with_ratio"
    make_data_mc_comparison_plot(
        [h3, h1, h2], ["data", "background", "signal"], ["black", "green", "red"], properties, show_ratio=True
    )

    properties.name = "matplotlib_hist_comparison"
    properties.y_limits = [0, 0.4]
    make_control_region_comparison(h1, h2, "background", "signal", properties)

else:
    fig = plt.figure(figsize=(14, 10), dpi=300)  # , facecolor='white')
    axes = plt.axes()
    axes.xaxis.set_minor_locator(AutoMinorLocator())
    axes.yaxis.set_minor_locator(AutoMinorLocator())
    # axes.yaxis.set_major_locator(MultipleLocator(20))
    axes.tick_params(which="major", labelsize=15, length=8)
    axes.tick_params(which="minor", length=4)
    rplt.errorbar(h3, xerr=False, emptybins=False, axes=axes, zorder=4)
    rplt.hist(stack, stacked=True, axes=axes, zorder=1)
    plt.xlabel("Mass", position=(1.0, 0.0), ha="right")
    plt.ylabel("Events", position=(0.0, 1.0), va="bottom", ha="right")
    plt.legend(numpoints=1)
    plt.tight_layout()
def make_plot( channel, x_axis_title, y_axis_title,
              signal_region_tree,
              control_region_tree,
              branchName,
              name_prefix, x_limits, nBins,
              use_qcd_data_region = False,
              compare_qcd_signal_with_data_control = False,
              y_limits = [],
              y_max_scale = 1.3,
              rebin = 1,
              legend_location = ( 0.98, 0.78 ), cms_logo_location = 'right',
              log_y = False,
              legend_color = False,
              ratio_y_limits = [0.3, 2.5],
              normalise = False,
              ):
    global output_folder, measurement_config, category, normalise_to_fit
    global preliminary, norm_variable, sum_bins, b_tag_bin, histogram_files

    controlToCompare = []
    if 'electron' in channel :
        controlToCompare =  ['QCDConversions', 'QCD non iso e+jets']
    elif 'muon' in channel :
        controlToCompare =  ['QCD iso > 0.3', 'QCD 0.12 < iso <= 0.3']

    histogramsToCompare = {}
    for qcd_data_region in controlToCompare:
        print 'Doing ',qcd_data_region
        # Input files, normalisations, tree/region names
        title = title_template % ( measurement_config.new_luminosity, measurement_config.centre_of_mass_energy )
        normalisation = None
        weightBranchSignalRegion = 'EventWeight'
        if 'electron' in channel:
            histogram_files['data'] = measurement_config.data_file_electron_trees
            histogram_files['QCD'] = measurement_config.electron_QCD_MC_category_templates_trees[category]
            if normalise_to_fit:
                normalisation = normalisations_electron[norm_variable]
            # if use_qcd_data_region:
            #     qcd_data_region = 'QCDConversions'
            #     # qcd_data_region = 'QCD non iso e+jets'
            if not 'QCD' in channel and not 'NPU' in branchName:
                weightBranchSignalRegion += ' * ElectronEfficiencyCorrection'
        if 'muon' in channel:
            histogram_files['data'] = measurement_config.data_file_muon_trees
            histogram_files['QCD'] = measurement_config.muon_QCD_MC_category_templates_trees[category]
            if normalise_to_fit:
                normalisation = normalisations_muon[norm_variable]
            # if use_qcd_data_region:
            #     qcd_data_region = 'QCD iso > 0.3'
            if not 'QCD' in channel and not 'NPU' in branchName:
                weightBranchSignalRegion += ' * MuonEfficiencyCorrection'

        if not "_NPUNoWeight" in name_prefix:
            weightBranchSignalRegion += ' * PUWeight'

        if not "_NBJetsNoWeight" in name_prefix:
            weightBranchSignalRegion += ' * BJetWeight'

        selection = '1'
        if branchName == 'abs(lepton_eta)' :
            selection = 'lepton_eta > -10'
        else:
            selection = '%s >= 0' % branchName
        # if 'QCDConversions' in signal_region_tree:
        #     selection += '&& isTightElectron'
        # print selection
        histograms = get_histograms_from_trees( trees = [signal_region_tree, control_region_tree], branch = branchName, weightBranch = weightBranchSignalRegion, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1], selection = selection )
        histograms_QCDControlRegion = None
        if use_qcd_data_region:
            qcd_control_region = signal_region_tree.replace( 'Ref selection', qcd_data_region )
            histograms_QCDControlRegion = get_histograms_from_trees( trees = [qcd_control_region], branch = branchName, weightBranch = 'EventWeight', files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1], selection = selection )

        # Split histograms up into signal/control (?)
        signal_region_hists = {}
        control_region_hists = {}
        for sample in histograms.keys():
            signal_region_hists[sample] = histograms[sample][signal_region_tree]

            if compare_qcd_signal_with_data_control:
                if sample is 'data':
                    signal_region_hists[sample] = histograms[sample][control_region_tree]
                elif sample is 'QCD' :
                    signal_region_hists[sample] = histograms[sample][signal_region_tree]
                else:
                    del signal_region_hists[sample]

            if use_qcd_data_region:
                control_region_hists[sample] = histograms_QCDControlRegion[sample][qcd_control_region]

        # Prepare histograms
        if normalise_to_fit:
            # only scale signal region to fit (results are invalid for control region)
            prepare_histograms( signal_region_hists, rebin = rebin,
                                scale_factor = measurement_config.luminosity_scale,
                                normalisation = normalisation )
        elif normalise_to_data:
            totalMC = 0
            for sample in signal_region_hists:
                if sample is 'data' : continue
                totalMC += signal_region_hists[sample].Integral()
            newScale = signal_region_hists['data'].Integral() / totalMC

            prepare_histograms( signal_region_hists, rebin = rebin,
                                scale_factor = newScale,
                               )
        else:
            print measurement_config.luminosity_scale
            prepare_histograms( signal_region_hists, rebin = rebin,
                                scale_factor = measurement_config.luminosity_scale )
            prepare_histograms( control_region_hists, rebin = rebin,
                                scale_factor = measurement_config.luminosity_scale )

        # Use qcd from data control region or not
        qcd_from_data = None
        if use_qcd_data_region:
            qcd_from_data = clean_control_region( control_region_hists,

                              subtract = ['TTJet', 'V+Jets', 'SingleTop'] )
            # Normalise control region correctly
            nBins = signal_region_hists['QCD'].GetNbinsX()
            n, error = signal_region_hists['QCD'].integral(0,nBins+1,error=True)
            n_qcd_predicted_mc_signal = ufloat( n, error)

            n, error = control_region_hists['QCD'].integral(0,nBins+1,error=True)
            n_qcd_predicted_mc_control = ufloat( n, error)

            n, error = qcd_from_data.integral(0,nBins+1,error=True)
            n_qcd_control_region = ufloat( n, error)

            if not n_qcd_control_region == 0:
                dataDrivenQCDScale = n_qcd_predicted_mc_signal / n_qcd_predicted_mc_control
                print 'Overall scale : ',dataDrivenQCDScale
                qcd_from_data.Scale( dataDrivenQCDScale.nominal_value )
                signalToControlScale = n_qcd_predicted_mc_signal / n_qcd_control_region
                dataToMCscale = n_qcd_control_region / n_qcd_predicted_mc_control
                print "Signal to control :",signalToControlScale
                print "QCD scale : ",dataToMCscale
        else:
            qcd_from_data = signal_region_hists['QCD']

        # Which histograms to draw, and properties
        histograms_to_draw = []
        histogram_lables = []
        histogram_colors = []

        if compare_qcd_signal_with_data_control :
            histograms_to_draw = [signal_region_hists['data'], qcd_from_data ]
            histogram_lables = ['data', 'QCD']
            histogram_colors = ['black', 'yellow']
        else :
            histograms_to_draw = [signal_region_hists['data'], qcd_from_data,
                                  signal_region_hists['V+Jets'],
                                  signal_region_hists['SingleTop'],
                                  signal_region_hists['TTJet']]
            histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']]
            histogram_colors = [colours['data'], colours['QCD'], colours['V+Jets'], colours['Single-Top'], colours['TTJet'] ]

        
        print list(qcd_from_data.y())
        histogramsToCompare[qcd_data_region] = qcd_from_data

    print histogramsToCompare
    histogram_properties = Histogram_properties()
    histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + branchName
    histogram_properties.title = title
    histogram_properties.x_axis_title = x_axis_title
    histogram_properties.y_axis_title = y_axis_title
    histogram_properties.x_limits = x_limits
    histogram_properties.y_limits = y_limits
    histogram_properties.mc_error = 0.0
    histogram_properties.legend_location = ( 0.98, 0.78 )
    histogram_properties.ratio_y_limits = ratio_y_limits
    if 'electron' in channel:
        make_control_region_comparison(histogramsToCompare['QCDConversions'], histogramsToCompare['QCD non iso e+jets'],
                                       name_region_1='Conversions', name_region_2='Non Iso',
                                       histogram_properties=histogram_properties, save_folder=output_folder)
    elif 'muon' in channel:
        make_control_region_comparison(histogramsToCompare['QCD iso > 0.3'], histogramsToCompare['QCD 0.12 < iso <= 0.3'],
                                       name_region_1='QCD iso > 0.3', name_region_2='QCD 0.12 < iso <= 0.3',
                                       histogram_properties=histogram_properties, save_folder=output_folder)