def do_shape_check(channel, control_region_1, control_region_2, variable, normalisation, title, x_title, y_title, x_limits, y_limits, name_region_1='conversions' , name_region_2='non-isolated electrons', name_region_3='fit results', rebin=1): global b_tag_bin # QCD shape comparison if channel == 'electron': histograms = get_histograms_from_files([control_region_1, control_region_2], histogram_files) region_1 = histograms[channel][control_region_1].Clone() - histograms['TTJet'][control_region_1].Clone() - histograms['V+Jets'][control_region_1].Clone() - histograms['SingleTop'][control_region_1].Clone() region_2 = histograms[channel][control_region_2].Clone() - histograms['TTJet'][control_region_2].Clone() - histograms['V+Jets'][control_region_2].Clone() - histograms['SingleTop'][control_region_2].Clone() region_1.Rebin(rebin) region_2.Rebin(rebin) histogram_properties = Histogram_properties() histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_' + b_tag_bin histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin] histogram_properties.x_axis_title = x_title histogram_properties.y_axis_title = 'arbitrary units/(0.1)' histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits[0] histogram_properties.mc_error = 0.0 histogram_properties.legend_location = 'upper right' make_control_region_comparison(region_1, region_2, name_region_1=name_region_1, name_region_2=name_region_2, histogram_properties=histogram_properties, save_folder=output_folder) # QCD shape comparison to fit results histograms = get_histograms_from_files([control_region_1], histogram_files) region_1_tmp = histograms[channel][control_region_1].Clone() - histograms['TTJet'][control_region_1].Clone() - histograms['V+Jets'][control_region_1].Clone() - histograms['SingleTop'][control_region_1].Clone() region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable]) fit_results_QCD = normalisation[variable]['QCD'] region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges_vis[variable]) histogram_properties = Histogram_properties() histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_conversions_' + b_tag_bin histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin] histogram_properties.x_axis_title = x_title histogram_properties.y_axis_title = 'arbitrary units/(0.1)' histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits[1] histogram_properties.mc_error = 0.0 histogram_properties.legend_location = 'upper right' make_control_region_comparison(region_1, region_2, name_region_1=name_region_1, name_region_2=name_region_3, histogram_properties=histogram_properties, save_folder=output_folder) histograms = get_histograms_from_files([control_region_2], histogram_files) region_1_tmp = histograms[channel][control_region_2].Clone() - histograms['TTJet'][control_region_2].Clone() - histograms['V+Jets'][control_region_2].Clone() - histograms['SingleTop'][control_region_2].Clone() region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable]) fit_results_QCD = normalisation[variable]['QCD'] region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges_vis[variable]) histogram_properties = Histogram_properties() histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_noniso_' + b_tag_bin histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin] histogram_properties.x_axis_title = x_title histogram_properties.y_axis_title = 'arbitrary units/(0.1)' histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits[1] histogram_properties.mc_error = 0.0 histogram_properties.legend_location = 'upper right' make_control_region_comparison(region_1, region_2, name_region_1=name_region_2, name_region_2=name_region_3, histogram_properties=histogram_properties, save_folder=output_folder)
# plot with matplotlib plot_with_plotting_script = True if plot_with_plotting_script: properties = Histogram_properties() properties.name = 'matplotlib_hist' properties.x_axis_title = 'Mass' properties.y_axis_title = 'Events' make_data_mc_comparison_plot( [h3, h1, h2], ['data', 'background', 'signal'], ['black', 'green', 'red'], properties ) properties.name += '_with_ratio' make_data_mc_comparison_plot( [h3, h1, h2], ['data', 'background', 'signal'], ['black', 'green', 'red'], properties, show_ratio = True ) properties.name = 'matplotlib_hist_comparison' properties.y_limits = [0, 0.4] make_control_region_comparison( h1, h2, 'background', 'signal', properties ) else: fig = plt.figure(figsize=(14, 10), dpi=300)#, facecolor='white') axes = plt.axes() axes.xaxis.set_minor_locator(AutoMinorLocator()) axes.yaxis.set_minor_locator(AutoMinorLocator()) # axes.yaxis.set_major_locator(MultipleLocator(20)) axes.tick_params(which='major', labelsize=15, length=8) axes.tick_params(which='minor', length=4) rplt.errorbar(h3, xerr=False, emptybins=False, axes=axes, zorder = 4) rplt.hist(stack, stacked=True, axes=axes, zorder = 1) plt.xlabel('Mass', position=(1., 0.), ha='right') plt.ylabel('Events', position=(0., 1.), va='bottom', ha='right') plt.legend(numpoints=1) plt.tight_layout()
def do_shape_check(channel, control_region_1, control_region_2, variable, normalisation, title, x_title, y_title, x_limits, y_limits, name_region_1='conversions', name_region_2='non-isolated electrons', name_region_3='fit results', rebin=1): global b_tag_bin # QCD shape comparison if channel == 'electron': histograms = get_histograms_from_files( [control_region_1, control_region_2], histogram_files) region_1 = histograms[channel][control_region_1].Clone( ) - histograms['TTJet'][control_region_1].Clone( ) - histograms['V+Jets'][control_region_1].Clone( ) - histograms['SingleTop'][control_region_1].Clone() region_2 = histograms[channel][control_region_2].Clone( ) - histograms['TTJet'][control_region_2].Clone( ) - histograms['V+Jets'][control_region_2].Clone( ) - histograms['SingleTop'][control_region_2].Clone() region_1.Rebin(rebin) region_2.Rebin(rebin) histogram_properties = Histogram_properties() histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_' + b_tag_bin histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin] histogram_properties.x_axis_title = x_title histogram_properties.y_axis_title = 'arbitrary units/(0.1)' histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits[0] histogram_properties.mc_error = 0.0 histogram_properties.legend_location = 'upper right' make_control_region_comparison( region_1, region_2, name_region_1=name_region_1, name_region_2=name_region_2, histogram_properties=histogram_properties, save_folder=output_folder) # QCD shape comparison to fit results histograms = get_histograms_from_files([control_region_1], histogram_files) region_1_tmp = histograms[channel][control_region_1].Clone( ) - histograms['TTJet'][control_region_1].Clone( ) - histograms['V+Jets'][control_region_1].Clone( ) - histograms['SingleTop'][control_region_1].Clone() region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable]) fit_results_QCD = normalisation[variable]['QCD'] region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges_vis[variable]) histogram_properties = Histogram_properties() histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_conversions_' + b_tag_bin histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin] histogram_properties.x_axis_title = x_title histogram_properties.y_axis_title = 'arbitrary units/(0.1)' histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits[1] histogram_properties.mc_error = 0.0 histogram_properties.legend_location = 'upper right' make_control_region_comparison( region_1, region_2, name_region_1=name_region_1, name_region_2=name_region_3, histogram_properties=histogram_properties, save_folder=output_folder) histograms = get_histograms_from_files([control_region_2], histogram_files) region_1_tmp = histograms[channel][control_region_2].Clone( ) - histograms['TTJet'][control_region_2].Clone( ) - histograms['V+Jets'][control_region_2].Clone( ) - histograms['SingleTop'][control_region_2].Clone() region_1 = rebin_asymmetric(region_1_tmp, bin_edges_vis[variable]) fit_results_QCD = normalisation[variable]['QCD'] region_2 = value_error_tuplelist_to_hist(fit_results_QCD, bin_edges_vis[variable]) histogram_properties = Histogram_properties() histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + variable + '_fits_with_noniso_' + b_tag_bin histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin] histogram_properties.x_axis_title = x_title histogram_properties.y_axis_title = 'arbitrary units/(0.1)' histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits[1] histogram_properties.mc_error = 0.0 histogram_properties.legend_location = 'upper right' make_control_region_comparison(region_1, region_2, name_region_1=name_region_2, name_region_2=name_region_3, histogram_properties=histogram_properties, save_folder=output_folder)
if plot_with_plotting_script: properties = Histogram_properties() properties.name = "matplotlib_hist" properties.x_axis_title = "Mass" properties.y_axis_title = "Events" make_data_mc_comparison_plot([h3, h1, h2], ["data", "background", "signal"], ["black", "green", "red"], properties) properties.name += "_with_ratio" make_data_mc_comparison_plot( [h3, h1, h2], ["data", "background", "signal"], ["black", "green", "red"], properties, show_ratio=True ) properties.name = "matplotlib_hist_comparison" properties.y_limits = [0, 0.4] make_control_region_comparison(h1, h2, "background", "signal", properties) else: fig = plt.figure(figsize=(14, 10), dpi=300) # , facecolor='white') axes = plt.axes() axes.xaxis.set_minor_locator(AutoMinorLocator()) axes.yaxis.set_minor_locator(AutoMinorLocator()) # axes.yaxis.set_major_locator(MultipleLocator(20)) axes.tick_params(which="major", labelsize=15, length=8) axes.tick_params(which="minor", length=4) rplt.errorbar(h3, xerr=False, emptybins=False, axes=axes, zorder=4) rplt.hist(stack, stacked=True, axes=axes, zorder=1) plt.xlabel("Mass", position=(1.0, 0.0), ha="right") plt.ylabel("Events", position=(0.0, 1.0), va="bottom", ha="right") plt.legend(numpoints=1) plt.tight_layout()
def make_plot( channel, x_axis_title, y_axis_title, signal_region_tree, control_region_tree, branchName, name_prefix, x_limits, nBins, use_qcd_data_region = False, compare_qcd_signal_with_data_control = False, y_limits = [], y_max_scale = 1.3, rebin = 1, legend_location = ( 0.98, 0.78 ), cms_logo_location = 'right', log_y = False, legend_color = False, ratio_y_limits = [0.3, 2.5], normalise = False, ): global output_folder, measurement_config, category, normalise_to_fit global preliminary, norm_variable, sum_bins, b_tag_bin, histogram_files controlToCompare = [] if 'electron' in channel : controlToCompare = ['QCDConversions', 'QCD non iso e+jets'] elif 'muon' in channel : controlToCompare = ['QCD iso > 0.3', 'QCD 0.12 < iso <= 0.3'] histogramsToCompare = {} for qcd_data_region in controlToCompare: print 'Doing ',qcd_data_region # Input files, normalisations, tree/region names title = title_template % ( measurement_config.new_luminosity, measurement_config.centre_of_mass_energy ) normalisation = None weightBranchSignalRegion = 'EventWeight' if 'electron' in channel: histogram_files['data'] = measurement_config.data_file_electron_trees histogram_files['QCD'] = measurement_config.electron_QCD_MC_category_templates_trees[category] if normalise_to_fit: normalisation = normalisations_electron[norm_variable] # if use_qcd_data_region: # qcd_data_region = 'QCDConversions' # # qcd_data_region = 'QCD non iso e+jets' if not 'QCD' in channel and not 'NPU' in branchName: weightBranchSignalRegion += ' * ElectronEfficiencyCorrection' if 'muon' in channel: histogram_files['data'] = measurement_config.data_file_muon_trees histogram_files['QCD'] = measurement_config.muon_QCD_MC_category_templates_trees[category] if normalise_to_fit: normalisation = normalisations_muon[norm_variable] # if use_qcd_data_region: # qcd_data_region = 'QCD iso > 0.3' if not 'QCD' in channel and not 'NPU' in branchName: weightBranchSignalRegion += ' * MuonEfficiencyCorrection' if not "_NPUNoWeight" in name_prefix: weightBranchSignalRegion += ' * PUWeight' if not "_NBJetsNoWeight" in name_prefix: weightBranchSignalRegion += ' * BJetWeight' selection = '1' if branchName == 'abs(lepton_eta)' : selection = 'lepton_eta > -10' else: selection = '%s >= 0' % branchName # if 'QCDConversions' in signal_region_tree: # selection += '&& isTightElectron' # print selection histograms = get_histograms_from_trees( trees = [signal_region_tree, control_region_tree], branch = branchName, weightBranch = weightBranchSignalRegion, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1], selection = selection ) histograms_QCDControlRegion = None if use_qcd_data_region: qcd_control_region = signal_region_tree.replace( 'Ref selection', qcd_data_region ) histograms_QCDControlRegion = get_histograms_from_trees( trees = [qcd_control_region], branch = branchName, weightBranch = 'EventWeight', files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1], selection = selection ) # Split histograms up into signal/control (?) signal_region_hists = {} control_region_hists = {} for sample in histograms.keys(): signal_region_hists[sample] = histograms[sample][signal_region_tree] if compare_qcd_signal_with_data_control: if sample is 'data': signal_region_hists[sample] = histograms[sample][control_region_tree] elif sample is 'QCD' : signal_region_hists[sample] = histograms[sample][signal_region_tree] else: del signal_region_hists[sample] if use_qcd_data_region: control_region_hists[sample] = histograms_QCDControlRegion[sample][qcd_control_region] # Prepare histograms if normalise_to_fit: # only scale signal region to fit (results are invalid for control region) prepare_histograms( signal_region_hists, rebin = rebin, scale_factor = measurement_config.luminosity_scale, normalisation = normalisation ) elif normalise_to_data: totalMC = 0 for sample in signal_region_hists: if sample is 'data' : continue totalMC += signal_region_hists[sample].Integral() newScale = signal_region_hists['data'].Integral() / totalMC prepare_histograms( signal_region_hists, rebin = rebin, scale_factor = newScale, ) else: print measurement_config.luminosity_scale prepare_histograms( signal_region_hists, rebin = rebin, scale_factor = measurement_config.luminosity_scale ) prepare_histograms( control_region_hists, rebin = rebin, scale_factor = measurement_config.luminosity_scale ) # Use qcd from data control region or not qcd_from_data = None if use_qcd_data_region: qcd_from_data = clean_control_region( control_region_hists, subtract = ['TTJet', 'V+Jets', 'SingleTop'] ) # Normalise control region correctly nBins = signal_region_hists['QCD'].GetNbinsX() n, error = signal_region_hists['QCD'].integral(0,nBins+1,error=True) n_qcd_predicted_mc_signal = ufloat( n, error) n, error = control_region_hists['QCD'].integral(0,nBins+1,error=True) n_qcd_predicted_mc_control = ufloat( n, error) n, error = qcd_from_data.integral(0,nBins+1,error=True) n_qcd_control_region = ufloat( n, error) if not n_qcd_control_region == 0: dataDrivenQCDScale = n_qcd_predicted_mc_signal / n_qcd_predicted_mc_control print 'Overall scale : ',dataDrivenQCDScale qcd_from_data.Scale( dataDrivenQCDScale.nominal_value ) signalToControlScale = n_qcd_predicted_mc_signal / n_qcd_control_region dataToMCscale = n_qcd_control_region / n_qcd_predicted_mc_control print "Signal to control :",signalToControlScale print "QCD scale : ",dataToMCscale else: qcd_from_data = signal_region_hists['QCD'] # Which histograms to draw, and properties histograms_to_draw = [] histogram_lables = [] histogram_colors = [] if compare_qcd_signal_with_data_control : histograms_to_draw = [signal_region_hists['data'], qcd_from_data ] histogram_lables = ['data', 'QCD'] histogram_colors = ['black', 'yellow'] else : histograms_to_draw = [signal_region_hists['data'], qcd_from_data, signal_region_hists['V+Jets'], signal_region_hists['SingleTop'], signal_region_hists['TTJet']] histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']] histogram_colors = [colours['data'], colours['QCD'], colours['V+Jets'], colours['Single-Top'], colours['TTJet'] ] print list(qcd_from_data.y()) histogramsToCompare[qcd_data_region] = qcd_from_data print histogramsToCompare histogram_properties = Histogram_properties() histogram_properties.name = 'QCD_control_region_comparison_' + channel + '_' + branchName histogram_properties.title = title histogram_properties.x_axis_title = x_axis_title histogram_properties.y_axis_title = y_axis_title histogram_properties.x_limits = x_limits histogram_properties.y_limits = y_limits histogram_properties.mc_error = 0.0 histogram_properties.legend_location = ( 0.98, 0.78 ) histogram_properties.ratio_y_limits = ratio_y_limits if 'electron' in channel: make_control_region_comparison(histogramsToCompare['QCDConversions'], histogramsToCompare['QCD non iso e+jets'], name_region_1='Conversions', name_region_2='Non Iso', histogram_properties=histogram_properties, save_folder=output_folder) elif 'muon' in channel: make_control_region_comparison(histogramsToCompare['QCD iso > 0.3'], histogramsToCompare['QCD 0.12 < iso <= 0.3'], name_region_1='QCD iso > 0.3', name_region_2='QCD 0.12 < iso <= 0.3', histogram_properties=histogram_properties, save_folder=output_folder)