Esempio n. 1
0
    def _traverse_from(self, grid: Grid, current_color: Color) -> bool:
        self._nodes_for_backprop.append((grid.state, current_color))
        node_info: NodeInfo = self._tree[(grid.state, current_color)]
        if not node_info.is_leaf:
            move = self._select_best_child_ucb(grid, current_color)
            return self._traverse_from(
                grid.grid_after_move(current_color, move),
                Color(1 - current_color))

        elif len(grid.available_moves) == 0:
            return False
        elif node_info.visits == 0:
            return self._rollout_from(grid, current_color)
        else:
            self._tree[(grid.state,
                        current_color)] = NodeInfo(wins=node_info.wins,
                                                   visits=node_info.visits,
                                                   is_leaf=False)
            for move in grid.available_moves:
                new_grid = grid.grid_after_move(current_color, move)
                if (new_grid.state,
                        Color(1 - current_color)) not in self._tree.keys():
                    self._tree[(new_grid.state,
                                1 - current_color)] = NodeInfo(wins=0,
                                                               visits=0,
                                                               is_leaf=True)

            move = random.choice(grid.available_moves)
            return self._traverse_from(
                grid.grid_after_move(current_color, move),
                Color(1 - current_color))
Esempio n. 2
0
    def test_move(self):
        g = Grid()
        g.move(Color.RED, 0)
        state = g.state.cols_first

        self.assertEqual(state[0][0], Color.RED)
        self.assertIsNone(state[0][1])
Esempio n. 3
0
    def _minmax(self, grid: Grid, depth: int, alpha: int, beta: int,
                color: Color, last_move: Union[int, None]) -> Tuple[int, int]:
        """Returns (best available value, move towards best value)"""
        computed = self._transposition_table.get(grid.state, None)
        if computed is not None and computed[0] >= depth: return computed[1:]

        if self._deadline.is_set() or depth == 0 or \
                (last_move is not None and self._judge.is_over_after_move_in_col(grid.state, last_move)):
            return self._evaluate(grid.state, self._judge), 0

        value = -INF if color == MAX_COLOR else INF
        best_move = None
        for move in grid.available_moves:
            child_value, _ = self._minmax(grid.grid_after_move(color, move),
                                          depth - 1, alpha, beta,
                                          Color(1 - color), move)

            if color == MAX_COLOR and child_value > value:
                best_move = move
                value = child_value
                alpha = max(alpha, value)
            elif color == MIN_COLOR and child_value < value:
                best_move = move
                value = child_value
                beta = min(beta, value)

            if alpha >= beta: break

        self._transposition_table[grid.state] = (depth, value, best_move)
        return value, best_move
Esempio n. 4
0
def create_game(first_player: Player,
                second_player: Player,
                first_color: Color = Color.RED) -> Game:
    return Game(grid=Grid(),
                judge=judge,
                first_player=first_player,
                second_player=second_player,
                first_color=first_color)
Esempio n. 5
0
    def _rollout_from(self,
                      grid: Grid,
                      color: Color,
                      last_col: Union[int, None] = None) -> bool:
        if len(grid.available_moves) == 0 or (last_col is None and self._judge.is_over(grid.state)) or \
                (last_col is not None and self._judge.is_over_after_move_in_col(grid.state, last_col)):
            return color != self._color

        move = random.choice(grid.available_moves)
        has_won = self._rollout_from(grid.grid_after_move(color, move),
                                     Color(1 - color), move)
        return has_won
Esempio n. 6
0
    def make_move_in_state(self, state: State) -> int:
        grid = Grid.from_state(state)
        assert len(grid.available_moves) > 0, 'No move available'

        finishing_move = self._finishing_move_in(grid)
        if finishing_move is not None: return finishing_move

        if (state, self._color) not in self._tree.keys():
            self._tree[(state, self._color)] = NodeInfo(visits=0,
                                                        is_leaf=True,
                                                        wins=0)

        self._compute(grid)

        return self._pick_most_visited_child_of(grid)
Esempio n. 7
0
    def test_middle_finishing(self):
        judge = Judge()
        g = Grid(ncols=4, nrows=2)
        g.move(Color.RED, 0)
        g.move(Color.RED, 1)
        g.move(Color.RED, 3)
        g.move(Color.RED, 2)

        self.assertTrue(judge.is_over(g.state))
        self.assertTrue(judge.is_over_after_move_in_col(g.state, 2))
Esempio n. 8
0
    def _select_best_child(self, parent: Grid, map_node_info: callable,
                           current_color: Color) -> int:
        """map_node_info should take parent's node_info and child's and return a positive float"""
        assert len(parent.available_moves) > 0, 'A leaf actually'

        parent_info = self._tree[(parent.state, current_color)]
        best_move, best_result = None, -1
        for move in parent.available_moves:
            child_info = self._tree[(parent.grid_after_move(
                current_color, move).state, Color(1 - current_color))]

            temp_result = map_node_info(parent_info, child_info)
            if temp_result > best_result:
                best_result, best_move = temp_result, move

        return best_move
Esempio n. 9
0
    def test_initial_state_rows_first(self):
        state = Grid(ncols=7, nrows=6).state.rows_first

        self.assertEqual(len(state), 6)
        self.assertEqual(len(state[0]), 7)
Esempio n. 10
0
    def test_size(self):
        g = Grid(ncols=12, nrows=2)

        self.assertEqual(g.ncols, 12)
        self.assertEqual(g.nrows, 2)
Esempio n. 11
0
    def test_vertical_win(self):
        judge = Judge()
        g = Grid(ncols=2, nrows=4)

        g.move(Color.RED, 0)
        g.move(Color.BLACK, 1)
        g.move(Color.RED, 0)
        g.move(Color.BLACK, 1)
        g.move(Color.RED, 0)
        g.move(Color.BLACK, 1)

        self.assertFalse(judge.is_over(g.state))

        g.move(Color.RED, 0)
        self.assertTrue(judge.is_over(g.state))
        self.assertTrue(judge.is_over_vertical(g.state))
        self.assertFalse(judge.is_over_horizontal(g.state))
Esempio n. 12
0
 def _finishing_move_in(self, grid: Grid) -> Union[int, None]:
     for move in grid.available_moves:
         after_move = grid.grid_after_move(self._color, move)
         if self._judge.is_over_after_move_in_col(after_move.state, move):
             return move
Esempio n. 13
0
    def test_state(self):
        g = Grid(ncols=5, nrows=4)
        g.move(Color.RED, 0)
        g.move(Color.BLACK, 1)
        g.move(Color.RED, 1)
        g.move(Color.BLACK, 2)
        g.move(Color.RED, 4)
        g.move(Color.BLACK, 1)
        state = g.state.rows_first

        # 3  - - - - -
        # 2  - B - - -
        # 1  - R - - -
        # 0  R B B - R
        #
        #    0 1 2 3 4

        self.assertSequenceEqual([None, None, None, None, None], state[3])
        self.assertSequenceEqual([None, Color.BLACK, None, None, None],
                                 state[2])
        self.assertSequenceEqual([None, Color.RED, None, None, None], state[1])
        self.assertSequenceEqual(
            [Color.RED, Color.BLACK, Color.BLACK, None, Color.RED], state[0])
Esempio n. 14
0
    def test_rightup_win(self):
        judge = Judge()
        g = Grid(ncols=5, nrows=4)

        g.move(Color.RED, 1)
        g.move(Color.BLACK, 0)
        g.move(Color.RED, 2)
        g.move(Color.BLACK, 1)
        g.move(Color.RED, 3)
        g.move(Color.BLACK, 2)
        g.move(Color.RED, 3)
        g.move(Color.BLACK, 2)
        g.move(Color.RED, 3)

        # 3  - - - B -
        # 2  - - B R -
        # 1  - B B R -
        # 0  B R R R -
        #    0 1 2 3 4

        self.assertFalse(judge.is_over(g.state))

        g.move(Color.BLACK, 3)
        self.assertTrue(judge.is_over(g.state))
        self.assertTrue(judge.is_over_rightup(g.state))
        self.assertFalse(judge.is_over_rightdown(g.state))
Esempio n. 15
0
 def test_move_outside(self):
     g = Grid()
     with self.assertRaises(AssertionError):
         g.move(Color.RED, 7)
Esempio n. 16
0
    def make_move_in_state(self, state: State) -> int:
        self._deadline.clear()
        Timer(self._timeout, lambda: self._deadline.set()).start()

        return self._iterative_deepening(Grid.from_state(state))
Esempio n. 17
0
                (last_move is not None and self._judge.is_over_after_move_in_col(grid.state, last_move)):
            return self._evaluate(grid.state, self._judge), 0

        value = -INF if color == MAX_COLOR else INF
        best_move = None
        for move in grid.available_moves:
            child_value, _ = self._minmax(grid.grid_after_move(color, move),
                                          depth - 1, alpha, beta,
                                          Color(1 - color), move)

            if color == MAX_COLOR and child_value > value:
                best_move = move
                value = child_value
                alpha = max(alpha, value)
            elif color == MIN_COLOR and child_value < value:
                best_move = move
                value = child_value
                beta = min(beta, value)

            if alpha >= beta: break

        self._transposition_table[grid.state] = (depth, value, best_move)
        return value, best_move


if __name__ == '__main__':
    game = Game(Grid(), Judge(),
                MinmaxPlayer(Color.RED, Judge(), Evaluator(), 4, 30),
                MinmaxPlayer(Color.BLACK, Judge(), Evaluator(), 6, 18))
    print(game.play())
Esempio n. 18
0
    def test_from_coords(self):
        judge = Judge()
        g = Grid(ncols=5, nrows=4)

        g.move(Color.RED, 2)
        g.move(Color.BLACK, 3)
        g.move(Color.RED, 1)
        g.move(Color.BLACK, 2)
        g.move(Color.RED, 0)
        g.move(Color.BLACK, 1)
        g.move(Color.RED, 0)
        g.move(Color.BLACK, 1)
        g.move(Color.RED, 0)
        g.move(Color.BLACK, 0)

        # 3  B - - - -
        # 2  R B - - -
        # 1  R B B - -
        # 0  R R R B -
        #    0 1 2 3 4

        self.assertFalse(judge.is_over_from(g.state, 1, 2))
        self.assertFalse(judge.is_over_from(g.state, 2, 1))
        self.assertTrue(judge.is_over_from(g.state, 0, 3))
        self.assertTrue(judge.is_over_from(g.state, 3, 0))
Esempio n. 19
0
    def test_horizontal_win(self):
        judge = Judge()
        g = Grid(ncols=4, nrows=4)

        g.move(Color.RED, 0)
        g.move(Color.BLACK, 0)
        g.move(Color.RED, 1)
        g.move(Color.BLACK, 1)
        g.move(Color.RED, 2)
        g.move(Color.BLACK, 2)

        self.assertFalse(judge.is_over(g.state))

        g.move(Color.RED, 3)
        self.assertTrue(judge.is_over(g.state))
        self.assertTrue(judge.is_over_horizontal(g.state))
        self.assertFalse(judge.is_over_rightdown(g.state))
Esempio n. 20
0
    def test_rightdown_win(self):
        judge = Judge()
        g = Grid(ncols=5, nrows=4)

        g.move(Color.RED, 2)
        g.move(Color.BLACK, 3)
        g.move(Color.RED, 1)
        g.move(Color.BLACK, 2)
        g.move(Color.RED, 0)
        g.move(Color.BLACK, 1)
        g.move(Color.RED, 0)
        g.move(Color.BLACK, 1)
        g.move(Color.RED, 0)

        # 3  B - - - -
        # 2  R B - - -
        # 1  R B B - -
        # 0  R R R B -
        #    0 1 2 3 4

        self.assertFalse(judge.is_over(g.state))

        g.move(Color.BLACK, 0)
        self.assertTrue(judge.is_over(g.state))
        self.assertTrue(judge.is_over_rightdown(g.state))
        self.assertFalse(judge.is_over_vertical(g.state))
Esempio n. 21
0
 def test_overflow(self):
     g = Grid()
     for _ in range(6):
         g.move(Color.RED, 2)
     with self.assertRaises(AssertionError):
         g.move(Color.RED, 2)
Esempio n. 22
0
            move = random.choice(grid.available_moves)
            return self._traverse_from(
                grid.grid_after_move(current_color, move),
                Color(1 - current_color))

    def _rollout_from(self,
                      grid: Grid,
                      color: Color,
                      last_col: Union[int, None] = None) -> bool:
        if len(grid.available_moves) == 0 or (last_col is None and self._judge.is_over(grid.state)) or \
                (last_col is not None and self._judge.is_over_after_move_in_col(grid.state, last_col)):
            return color != self._color

        move = random.choice(grid.available_moves)
        has_won = self._rollout_from(grid.grid_after_move(color, move),
                                     Color(1 - color), move)
        return has_won

    def _finishing_move_in(self, grid: Grid) -> Union[int, None]:
        for move in grid.available_moves:
            after_move = grid.grid_after_move(self._color, move)
            if self._judge.is_over_after_move_in_col(after_move.state, move):
                return move


if __name__ == '__main__':
    game = Game(Grid(), Judge(), MCTSPlayer(Color.RED, Judge(), 2, 1000),
                MCTSPlayer(Color.BLACK, Judge(), 5, 1000))

    print(game.play())
Esempio n. 23
0
 def test_empty_grid(self):
     Grid(ncols=7, nrows=6)
Esempio n. 24
0
    def test_from_last_in_empty(self):
        judge = Judge()
        g = Grid(ncols=2, nrows=2)

        with self.assertRaises(AssertionError):
            judge.is_over_after_move_in_col(g.state, 1)