Esempio n. 1
0
    def predict(self, passages):
        # ᅩ£￈고￘ᅰ￷
        for p in passages:
            if not p.preprocessed: essayprepare.processPassage(p)
            p.lf = self.extractor.extractLangFeather(p)
            p.cf = self.extractor.extractContentFeather(p)
            p.sf = self.extractor.extractStructureFeather(p)

        # ᅧ¦ᄈ￶ᅩ￘ᅰ￷ᅱᄉ
        f = open('fs_test.txt', 'w')
        
        # ￉ᄈ￉ᅩ￘ᅰ￷ᅬ￲￁﾿
        endog = []
        exog = []
        labels = []
        for p in passages:
            score = int(p.score)
            if score < 35: score = 35
            endog.append(score)
            x = self.__getFeatherList(p)
            exog.append(x)
            labels.append(p.label)
            
            f.write(p.id + ' ')
            f.write(p.score)
            for v in x:
                f.write(' ' + str(v))
            f.write('\n')
    
        f.close()
        
        p_label, p_acc, p_val = svmutil.svm_predict(labels, exog, self.svm_model)  
        print p_label, p_acc, p_val
Esempio n. 2
0
    def rate_by_params(self, passage):
        # 线性预测
        extractor = FeatherExtractor(None)
        if not passage.preprocessed: essayprepare.processPassage(passage)
        passage.lf = extractor.extractLangFeather(passage)
        passage.cf = extractor.extractContentFeather(passage)
        passage.sf = extractor.extractStructureFeather(passage)

        exog = []
        x = self.__getFeatherList(passage)
        
        score = dot(x, self.model_params)
        
        passage.rateScore = score
        passage.endogScore = score
                
        # 调整分数
        passage.filter_scores = []
        filters = [self.tokenCountFilter, self.sentenceLengthAverageFilter,
                   self.wordLengthAverageFilter, self.aclWordCountFilter,
                   self.noneStopWordLengthAverageFilter, self.nounRatioFilter]
        
        for filter in filters:
            filter_score = filter(passage)
            passage.rateScore += filter_score
            passage.filter_scores.append(filter_score)
        
        passage.rated = True
        return [passage.rateScore]
Esempio n. 3
0
    def rate_by_params(self, passage):
        # 线性预测
        extractor = FeatherExtractor(None)
        if not passage.preprocessed: essayprepare.processPassage(passage)
        passage.lf = extractor.extractLangFeather(passage)
        passage.cf = extractor.extractContentFeather(passage)
        passage.sf = extractor.extractStructureFeather(passage)

        exog = []
        x = self.__getFeatherList(passage)

        score = dot(x, self.model_params)

        passage.rateScore = score
        passage.endogScore = score

        # 调整分数
        passage.filter_scores = []
        filters = [
            self.tokenCountFilter, self.sentenceLengthAverageFilter,
            self.wordLengthAverageFilter, self.aclWordCountFilter,
            self.noneStopWordLengthAverageFilter, self.nounRatioFilter,
            self.total_score_filter
        ]

        for filter in filters:
            filter_score = filter(passage)
            passage.rateScore += filter_score
            passage.filter_scores.append(filter_score)

        passage.rated = True
        return [passage.rateScore]
    def rate(self, passage):
        # 线性预测
        if not passage.preprocessed: essayprepare.processPassage(passage)
        passage.lf = self.extractor.extractLangFeather(passage)
        passage.cf = self.extractor.extractContentFeather(passage)
        passage.sf = self.extractor.extractStructureFeather(passage)

        exog = []
        x = self.__getFeatherList(passage)
        exog.append(x)
        exog = np.array(exog)
        endog = self.gls_model.predict(exog)
        passage.rateScore = endog[0]
        passage.endogScore = endog[0]

        passage.filters = []

        # 调整分数
        filter = self.tokenCountFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)

        filter = self.sentenceLengthAverageFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)

        filter = self.wordLengthAverageFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)

        filter = self.aclWordCountFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)

        filter = self.noneStopWordLengthAverageFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)

        filter = self.nounRatioFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)

        filter = self.verbRatioFilter(passage)
        #passage.rateScore += filter
        passage.filters.append(filter)

        filter = self.adjRatioFilter(passage)
        #passage.rateScore += filter
        passage.filters.append(filter)

        filter = self.posRatioFilter(passage)
        #passage.rateScore += filter
        passage.filters.append(filter)

        passage.rated = True
        endog[0] = passage.rateScore
        return [passage.rateScore]
Esempio n. 5
0
    def rate(self, passage):
        # 线性预测
        if not passage.preprocessed: essayprepare.processPassage(passage)
        passage.lf = self.extractor.extractLangFeather(passage)
        passage.cf = self.extractor.extractContentFeather(passage)
        passage.sf = self.extractor.extractStructureFeather(passage)

        exog = []
        x = self.__getFeatherList(passage)
        exog.append(x)
        exog = np.array(exog)
        endog = self.gls_model.predict(exog)
        passage.rateScore = endog[0]
        passage.endogScore = endog[0]
        
        passage.filters = []
        
        # 调整分数
        filter = self.tokenCountFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)
            
        filter = self.sentenceLengthAverageFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)
        
        filter = self.wordLengthAverageFilter(passage)
        passage.rateScore += filter  
        passage.filters.append(filter)
        
        filter = self.aclWordCountFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)
        
        filter = self.noneStopWordLengthAverageFilter(passage)
        passage.rateScore += filter
        passage.filters.append(filter)
        
        filter = self.nounRatioFilter(passage)  
        passage.rateScore += filter      
        passage.filters.append(filter)
        
        filter = self.verbRatioFilter(passage)
        #passage.rateScore += filter     
        passage.filters.append(filter)
        
        filter = self.adjRatioFilter(passage)
        #passage.rateScore += filter  
        passage.filters.append(filter)
        
        filter = self.posRatioFilter(passage)
        #passage.rateScore += filter
        passage.filters.append(filter)
        
        passage.rated = True
        endog[0] = passage.rateScore
        return [passage.rateScore]
    def train(self, passages):
        # pre-process passage
        i = 1
        for p in passages:
            print "======================="
            print "Passage", i, p.id
            if not p.preprocessed: essayprepare.processPassage(p)
            i += 1

        self.extractor = FeatherExtractor(None)
        for p in passages:
            p.lf = self.extractor.extractLangFeather(p)
            p.cf = self.extractor.extractContentFeather(p)
            p.sf = self.extractor.extractStructureFeather(p)

        # save feathers
        f = open('fs_zhang_train.txt', 'w')
        for p in passages:
            x = self.__getFeatherList(p)
            f.write(p.id + ' ')
            f.write(str(p.score))
            for v in x:
                f.write(' ' + str(v))
            f.write('\n')
        f.close()

        # generate feather vector
        endog = []
        exog = []
        for p in passages:
            score = int(p.score)
            endog.append(score)
            x = self.__getFeatherList(p)
            exog.append(x)

        # train model
        endog = np.array(endog)
        exog = np.array(exog)

        self.gls_model = sm.GLS(endog, exog)
        results = self.gls_model.fit()
        #print results.summary()
        print results.params
Esempio n. 7
0
    def train(self, passages):
        # pre-process passage
        i = 1
        for p in passages:
            print "======================="
            print "Passage", i, p.id
            if not p.preprocessed: essayprepare.processPassage(p)
            i += 1

        self.extractor = FeatherExtractor(None)
        for p in passages:
            p.lf = self.extractor.extractLangFeather(p)
            p.cf = self.extractor.extractContentFeather(p)
            p.sf = self.extractor.extractStructureFeather(p)   
        
        # save feathers
        f = open('fs_zhang_train.txt', 'w')
        for p in passages:   
            x = self.__getFeatherList(p)       
            f.write(p.id + ' ')
            f.write(str(p.score))
            for v in x:
                f.write(' ' + str(v))
            f.write('\n')
        f.close()
        
        # generate feather vector
        endog = []
        exog = []
        for p in passages:
            score = int(p.score)
            endog.append(score)
            x = self.__getFeatherList(p)
            exog.append(x)     
        
        # train model
        endog = np.array(endog)
        exog = np.array(exog)
        
        self.gls_model = sm.GLS(endog, exog)
        results = self.gls_model.fit()
        #print results.summary()
        print results.params
Esempio n. 8
0
def demo_one_sentence():
    # 文章
    passage = EssayPassage()
    passage.passage = 'I am a students.'
    passage.title = 'title'
    passage.score = 5
    passage.id = '1'
    passage.reviewerId = 3
    passage.content = 'I am a students.'

    # 处理文章
    essayprepare.processPassage(passage)

    extractor = FeatherExtractor()
    lf = extractor.extractLangFeather(passage)
    passage.lf = lf
    cf = extractor.extractContentFeather(passage)
    sf = extractor.extractStructureFeather(passage)

    print 'OK'
Esempio n. 9
0
def demo_one_sentence():
    # 文章
    passage = EssayPassage()
    passage.passage = 'I am a students.'
    passage.title = 'title'
    passage.score = 5
    passage.id = '1'
    passage.reviewerId = 3
    passage.content = 'I am a students.'
    
    # 处理文章
    essayprepare.processPassage(passage)
    
    extractor = FeatherExtractor()
    lf = extractor.extractLangFeather(passage)
    passage.lf = lf
    cf = extractor.extractContentFeather(passage)
    sf = extractor.extractStructureFeather(passage)   
    
    print 'OK'
Esempio n. 10
0
    def rate(self, passage):
        # 线性预测
        if not passage.preprocessed: essayprepare.processPassage(passage)
        passage.lf = self.extractor.extractLangFeather(passage)
        passage.cf = self.extractor.extractContentFeather(passage)
        passage.sf = self.extractor.extractStructureFeather(passage)
        passage.lsaScore = passage.cf.lsaScore
        passage.lsaSimilarity = passage.cf.lsaSimilarity
        passage.lsaSimilarityAll = passage.cf.lsaSimilarityAll

        exog = []
        x = self.__getFeatherList(passage)
        exog.append(x)
#        for i, xx in enumerate(x):
#            x[i] -= self.m[i]
        exog = np.array(exog)
#        xxexog = dot(self.p, exog.transpose())
#        endog = self.gls_model.predict(xxexog.transpose())
        endog = self.gls_model.predict(exog)
        passage.rateScore = endog[0]
        passage.endogScore = endog[0]
        
        # 调整分数
        passage.filter_scores = []
        filters = [self.tokenCountFilter, self.sentenceLengthAverageFilter,
                   self.wordLengthAverageFilter, self.aclWordCountFilter,
                   self.noneStopWordLengthAverageFilter, self.nounRatioFilter,
                   self.verbRatioFilter, self.adjRatioFilter,
                   self.posRatioFilter, self.lsaFilter]
        
        for filter in filters:
            filter_score = filter(passage)
            passage.rateScore += filter_score
            passage.filter_scores.append(filter_score)
        
        self.generateRateResult(passage)
        
        passage.rated = True
        endog[0] = passage.rateScore
        return [passage.rateScore]
Esempio n. 11
0
def generatePassageFeathers(passages, outFilename):
    f = open(outFilename, 'w')

    e = FeatherExtractor()

    i = 1

    for p in passages:
        print "Passage ", i
        # 处理文章
        essayprepare.processPassage(p)
        # 提取语言特征
        languageFeather = e.extractLangFeather(p)
        p.lf = languageFeather
        # 提取结构特征
        structureFeather = e.extractStructureFeather(p)
        p.sf = structureFeather

        f.write(p.id + ' ')
        f.write(str(p.score))
        f.write(' ' + str(languageFeather))
        f.write('\n')
        i += 1
    f.close()
Esempio n. 12
0
def generatePassageFeathers(passages, outFilename):
    f = open(outFilename, 'w')
    
    e = FeatherExtractor()    
    
    i = 1
    
    for p in passages:
        print "Passage ", i
        # 处理文章
        essayprepare.processPassage(p)
        # 提取语言特征    
        languageFeather = e.extractLangFeather(p)  
        p.lf = languageFeather
        # 提取结构特征  
        structureFeather = e.extractStructureFeather(p)
        p.sf = structureFeather
        
        f.write(p.id + ' ')
        f.write(str(p.score))
        f.write(' ' + str(languageFeather))
        f.write('\n')
        i += 1
    f.close()
Esempio n. 13
0
 for e in essays:
     if e.id == "0092":
         essay = e
         break  
 
 # 文章
 passage = EssayPassage()
 passage.passage = essay.cleanContent()
 passage.title = essay.title
 passage.score = essay.score
 passage.id = essay.id
 passage.reviewerId = essay.reviewerId
 passage.content = essay.content
 
 # 处理文章
 essayprepare.processPassage(passage)
 
 # 输出来看看是啥样子    
 print "PASSAGE========================================="        
 print passage
 print passage.id
 print passage.title
 print passage.score
 print passage.passage
 print len(passage.paragraphs)
 print "PARAGRAPHS---------------------------------------"
 for para in passage.paragraphs:
     print para.paragraphNo
     print para.paragraph
     for sent in para.sentences:
         print sent.sentenceNo
Esempio n. 14
0
    for e in essays:
        if e.id == "0092":
            essay = e
            break

    # 文章
    passage = EssayPassage()
    passage.passage = essay.cleanContent()
    passage.title = essay.title
    passage.score = essay.score
    passage.id = essay.id
    passage.reviewerId = essay.reviewerId
    passage.content = essay.content

    # 处理文章
    essayprepare.processPassage(passage)

    # 输出来看看是啥样子
    print "PASSAGE========================================="
    print passage
    print passage.id
    print passage.title
    print passage.score
    print passage.passage
    print len(passage.paragraphs)
    print "PARAGRAPHS---------------------------------------"
    for para in passage.paragraphs:
        print para.paragraphNo
        print para.paragraph
        for sent in para.sentences:
            print sent.sentenceNo
Esempio n. 15
0
def do_task(task):
    newpassage = EssayPassage()
    newpassage.passage = task['input']['content']
    newpassage.orderId = task['id']
    newpassage.score = 0
    newpassage.processStatus = 0
    try:
        essayprepare.processPassage(newpassage, fn_prepare_progress)
        fe = extractor.FeatherExtractor()
        lf = fe.extractLangFeather(newpassage)
        newpassage.lf = lf
        cf = fe.extractContentFeather(newpassage)
        newpassage.cf = cf
        sf = fe.extractStructureFeather(newpassage) 
        newpassage.sf = sf
        newpassage.score = rater.rate_by_params(newpassage)[0]
    except:
        task['progress'] = -2
        task['status'] = 'TUTERR'
        task['output'] = ""
        task['simple_output'] = ""
        task['detail_output'] = ""
        commit_task(task)
        return

    # 生成最终结果
    output = {}
    passage = {}
    passage['score'] = newpassage.score
    passage['token_count'] = lf.tokenCount
    passage['word_count'] = lf.wordCount
    passage['word_type_count'] = lf.wordTypeCount
    passage['word_lemma_count'] = lf.wordLemmaCount
    passage['word_stem_count'] = lf.wordStemCount
    passage['average_word_length'] = lf.wordLengthAverage
    passage['average_sentence_length'] = lf.sentenceLengthAverage
    passage['overly_use_word_count'] = lf.overlyUseWordCount
    passage['paragraph_count'] = len(newpassage.paragraphs)
    passage['sentence_count'] = newpassage.sentenceCount
    passage['sentences'] = []
    for para in newpassage.paragraphs:
        for sent in para.sentences:
            sentence = {}
            sentence['no'] = sent.sentenceNo
            sentence['para_no'] = para.paragraphNo
            sentence['original'] = sent.sentence
            sentence['score'] = 0
            spell_errors = []
            fs = []
            for token in sent.tokens:
                if token.isSpellError:
                    fs.append('<ESP>' + token.token + '</ESP>')
                    spell_error = {}
                    spell_error['token'] = token.token
                    spell_error['lemma'] = token.lemma
                    spell_error['suggest'] = token.candidates
                    spell_error['start_at'] = token.startAt
                    spell_error['end_at'] = token.endAt
                    spell_errors.append(spell_error)
                else:
                    fs.append(token.token)
            sentence['spell_errors'] = spell_errors
            sentence['marked'] = ' '.join(fs)
            sentence['lt_result'] = sent.ltCheckResults   
            sentence['lg_result'] = sent.lgCheckResults
            sentence['links'] = []
            passage['sentences'].append(sentence)
           
    output['passage'] = passage
    task['progress'] = 100
    task['status'] = 'DONE'
    task['output'] = json.dumps(output)
    task['simple_output'] = json.dumps(output)    
    task['detail_output'] = json.dumps(generate_detail_output(newpassage))   
        
    commit_task(task)
Esempio n. 16
0
 def processEssay(self):
     self.browser.clear()
     id = unicode(self.lineedit.text())
     essay = self.essayDict.get(id)
     if not essay:
         self.browser.append("<font color=red>%s is not found!</font>" % id)
         return
     
     self.browser.append(essay.content)
     
     # 文章
     passage = EssayPassage()
     passage.passage = essay.cleanContent()
     passage.title = essay.title
     passage.score = essay.score
     passage.id = essay.id
     
     # 处理文章
     essayprepare.processPassage(passage)
     
     # 输出来看看是啥样子    
     self.browser.append("PASSAGE=========================================")        
     self.browser.append(passage.id)
     #self.browser.append(passage.title)
     self.browser.append(passage.score)
     self.browser.append(passage.passage)
     self.browser.append(str(len(passage.paragraphs)))
     self.browser.append("PARAGRAPHS---------------------------------------")
     for para in passage.paragraphs:
         self.browser.append(str(para.paragraphNo))
         self.browser.append(para.paragraph)
         for sent in para.sentences:
             self.browser.append(str(sent.sentenceNo))
             self.browser.append(str(sent.paragraphSentenceNo))
             self.browser.append(sent.sentence)
             tokens = [token.token for token in sent.tokens]
             tags = [token.pos for token in sent.tokens]
             lemmas = [token.lemma for token in sent.tokens]
             stems = [token.stem for token in sent.tokens]
             levels = [token.level for token in sent.tokens]
             nos = [token.tokenNo for token in sent.tokens]
             sentNos = [token.sentenceTokenNo for token in sent.tokens]
             paraNos = [token.paragraphTokenNo for token in sent.tokens]
             errorTokens = [token.token for token in sent.tokens if token.isSpellError]
             if not sent.canParsed:
                 self.browser.append("<font color=red>SENTENCE ERROR</font>")
             self.browser.append("<font color=red>SPELLERROR %s</font>" % str(errorTokens))
             self.browser.append(str(tokens))
             self.browser.append(str(tags))
             self.browser.append(str(lemmas))
             self.browser.append(str(stems))
             self.browser.append(str(levels))
             self.browser.append(str(sentNos))
             self.browser.append(str(paraNos))
             self.browser.append(str(nos))
             self.browser.append(str(sent.tokenCount))
             self.browser.append(str(sent.wordCount))
             self.browser.append(str(sent.realWordCount))
     
     self.browser.append(u"三元词组" + ' ' + str(passage.trigrams))
 
 
     e = FeatherExtractor()
 
     # 提取语言特征    
     languageFeather = e.extractLangFeather(passage)  
     
     print u"词次总数", languageFeather.tokenCount
     print u"单词总数", languageFeather.wordCount
     print u"词形总数", languageFeather.wordTypeCount
     print u"词元总数", languageFeather.wordLemmaCount
     
     print u"介词个数", languageFeather.prepositionCount
     print u"介词比例", languageFeather.prepositionRatio
     print u"介词使用", languageFeather.prepositionUse
     
     print u"定冠词个数", languageFeather.definiteArticleCount
     print u"定冠词比例", languageFeather.definiteArticleRatio
     print u"定冠词使用", languageFeather.definiteArticleUse
     
     # 提取结构特征  
     #structureFeather = e.extractStructureFeather(passage)
     
     #generateUSTCFeathers('USTC2011Jan.txt', 'USTCFeathers_503.txt')
         
     print "...OVER"
Esempio n. 17
0
    def processEssay(self):
        self.browser.clear()
        id = unicode(self.lineedit.text())
        essay = self.essayDict.get(id)
        if not essay:
            self.browser.append("<font color=red>%s is not found!</font>" % id)
            return

        self.browser.append(essay.content)

        # 文章
        passage = EssayPassage()
        passage.passage = essay.cleanContent()
        passage.title = essay.title
        passage.score = essay.score
        passage.id = essay.id

        # 处理文章
        essayprepare.processPassage(passage)

        # 输出来看看是啥样子
        self.browser.append("PASSAGE=========================================")
        self.browser.append(passage.id)
        #self.browser.append(passage.title)
        self.browser.append(passage.score)
        self.browser.append(passage.passage)
        self.browser.append(str(len(passage.paragraphs)))
        self.browser.append(
            "PARAGRAPHS---------------------------------------")
        for para in passage.paragraphs:
            self.browser.append(str(para.paragraphNo))
            self.browser.append(para.paragraph)
            for sent in para.sentences:
                self.browser.append(str(sent.sentenceNo))
                self.browser.append(str(sent.paragraphSentenceNo))
                self.browser.append(sent.sentence)
                tokens = [token.token for token in sent.tokens]
                tags = [token.pos for token in sent.tokens]
                lemmas = [token.lemma for token in sent.tokens]
                stems = [token.stem for token in sent.tokens]
                levels = [token.level for token in sent.tokens]
                nos = [token.tokenNo for token in sent.tokens]
                sentNos = [token.sentenceTokenNo for token in sent.tokens]
                paraNos = [token.paragraphTokenNo for token in sent.tokens]
                errorTokens = [
                    token.token for token in sent.tokens if token.isSpellError
                ]
                if not sent.canParsed:
                    self.browser.append(
                        "<font color=red>SENTENCE ERROR</font>")
                self.browser.append("<font color=red>SPELLERROR %s</font>" %
                                    str(errorTokens))
                self.browser.append(str(tokens))
                self.browser.append(str(tags))
                self.browser.append(str(lemmas))
                self.browser.append(str(stems))
                self.browser.append(str(levels))
                self.browser.append(str(sentNos))
                self.browser.append(str(paraNos))
                self.browser.append(str(nos))
                self.browser.append(str(sent.tokenCount))
                self.browser.append(str(sent.wordCount))
                self.browser.append(str(sent.realWordCount))

        self.browser.append(u"三元词组" + ' ' + str(passage.trigrams))

        e = FeatherExtractor()

        # 提取语言特征
        languageFeather = e.extractLangFeather(passage)

        print u"词次总数", languageFeather.tokenCount
        print u"单词总数", languageFeather.wordCount
        print u"词形总数", languageFeather.wordTypeCount
        print u"词元总数", languageFeather.wordLemmaCount

        print u"介词个数", languageFeather.prepositionCount
        print u"介词比例", languageFeather.prepositionRatio
        print u"介词使用", languageFeather.prepositionUse

        print u"定冠词个数", languageFeather.definiteArticleCount
        print u"定冠词比例", languageFeather.definiteArticleRatio
        print u"定冠词使用", languageFeather.definiteArticleUse

        # 提取结构特征
        #structureFeather = e.extractStructureFeather(passage)

        #generateUSTCFeathers('USTC2011Jan.txt', 'USTCFeathers_503.txt')

        print "...OVER"
Esempio n. 18
0
def do_task(task):
    newpassage = EssayPassage()
    newpassage.passage = task['input']['content']
    newpassage.orderId = task['id']
    newpassage.score = 0
    newpassage.processStatus = 0
    try:
        essayprepare.processPassage(newpassage, fn_prepare_progress)
        fe = extractor.FeatherExtractor()
        lf = fe.extractLangFeather(newpassage)
        newpassage.lf = lf
        cf = fe.extractContentFeather(newpassage)
        newpassage.cf = cf
        sf = fe.extractStructureFeather(newpassage)
        newpassage.sf = sf
        newpassage.score = rater.rate_by_params(newpassage)[0]
    except:
        task['progress'] = -2
        task['status'] = 'TUTERR'
        task['output'] = ""
        task['simple_output'] = ""
        task['detail_output'] = ""
        commit_task(task)
        return

    # 生成最终结果
    output = {}
    passage = {}
    passage['score'] = newpassage.score
    passage['token_count'] = lf.tokenCount
    passage['word_count'] = lf.wordCount
    passage['word_type_count'] = lf.wordTypeCount
    passage['word_lemma_count'] = lf.wordLemmaCount
    passage['word_stem_count'] = lf.wordStemCount
    passage['average_word_length'] = lf.wordLengthAverage
    passage['average_sentence_length'] = lf.sentenceLengthAverage
    passage['overly_use_word_count'] = lf.overlyUseWordCount
    passage['paragraph_count'] = len(newpassage.paragraphs)
    passage['sentence_count'] = newpassage.sentenceCount
    passage['sentences'] = []
    for para in newpassage.paragraphs:
        for sent in para.sentences:
            sentence = {}
            sentence['no'] = sent.sentenceNo
            sentence['para_no'] = para.paragraphNo
            sentence['original'] = sent.sentence
            sentence['score'] = 0
            spell_errors = []
            fs = []
            for token in sent.tokens:
                if token.isSpellError:
                    fs.append('<ESP>' + token.token + '</ESP>')
                    spell_error = {}
                    spell_error['token'] = token.token
                    spell_error['lemma'] = token.lemma
                    spell_error['suggest'] = token.candidates
                    spell_error['start_at'] = token.startAt
                    spell_error['end_at'] = token.endAt
                    spell_errors.append(spell_error)
                else:
                    fs.append(token.token)
            sentence['spell_errors'] = spell_errors
            sentence['marked'] = ' '.join(fs)
            sentence['lt_result'] = sent.ltCheckResults
            sentence['lg_result'] = sent.lgCheckResults
            sentence['links'] = []
            passage['sentences'].append(sentence)

    output['passage'] = passage
    task['progress'] = 100
    task['status'] = 'DONE'
    task['output'] = json.dumps(output)
    task['simple_output'] = json.dumps(output)
    task['detail_output'] = json.dumps(generate_detail_output(newpassage))

    commit_task(task)
Esempio n. 19
0
    def train(self, passages):
        # 预处理文章
        i = 1
        for p in passages:
            #print "Passage ", i
            # 处理文章
            if not p.preprocessed: essayprepare.processPassage(p)
            i += 1
        
        # 训练模型
        passages.sort(cmp=lambda x,y: cmp(x.score, y.score), reverse=True)
        
        model = EssayModel()
        model.train(passages)
        self.models['1'] = model
        #print model.triGramDicts
        
        # 提取特征
        self.extractor = FeatherExtractor(model)
        for p in passages:
            p.lf = self.extractor.extractLangFeather(p)
            p.cf = self.extractor.extractContentFeather(p)
            p.sf = self.extractor.extractStructureFeather(p)   
        
        # 输出特征值
        f = open('fs_train.txt', 'w')
        
        # 生成特征向量
        endog = []
        exog = []
        labels = []
        for p in passages:
            score = int(p.score)
#            if score > 90: score = 90
#            if score < 35: score = 35
            endog.append(score)
            x = self.__getFeatherList(p)
            exog.append(x)

            labels.append(p.label)
            
            f.write(p.id + ' ')
            f.write(str(p.score))
            for v in x:
                f.write(' ' + str(v))
            f.write('\n')
        
        f.close()       
        
        # SVM分类器训练
        #self.svm_model = svmutil.svm_train(labels, exog, '-c 3')
        
        # 线性回归模型训练  
        endog = np.array(endog)
        exog = np.array(exog)
#        print endog
#        print exog
        
#        self.m = np.mean(exog,axis=0)
#        print self.m
#        
#        T, P, e_var = PCA_svd(exog)   
#        print T
#        print P
#        print e_var
#        
#        r, c = P.shape
#        print r, c
#        for i in xrange(11, r):
#            for j in xrange(0, c):
#                P[i, j] = 0
#        print P
#        self.p = P
#        
#        xexog = dot(P, exog.transpose())
#        print xexog
#        print xexog.shape
#        
#        xxexog = xexog.transpose() 
        
        self.gls_model = sm.GLS(endog, exog)
        self.gls_model.fit()
Esempio n. 20
0
    def rate(self, passage):
        # ᅬ￟￐ᅯᅯᄂᄇ¬
        if not passage.preprocessed: essayprepare.processPassage(passage)
        passage.lf = self.extractor.extractLangFeather(passage)
        passage.cf = self.extractor.extractContentFeather(passage)
        passage.sf = self.extractor.extractStructureFeather(passage)
        exog = []
        x = self.__getFeatherList(passage)
        exog.append(x)
#        for i, xx in enumerate(x):
#            x[i] -= self.m[i]
        exog = np.array(exog)
#        xxexog = dot(self.p, exog.transpose())
#        endog = self.gls_model.predict(xxexog.transpose())
        endog = self.gls_model.predict(exog)
        passage.rateScore = endog[0]
        passage.endogScore = endog[0]
        
        # ᄉ￷ᅰ위ᅧ�
        # ᄌᄒ￝ᅫᅣᅰᅡᅲᅱᅧ�ᄉ￷ᅰ
        if (passage.lf.tokenCount < 100):
            passage.rateScore *= 0.8
        elif passage.lf.tokenCount < 120:
            passage.rateScore *= 0.9
            
        # ᄌᄒ￝ᅥᄑᄒᄒ¦ᄈᄂᄉ￷ᅰ
        filter = 0
        slv = passage.lf.sentenceLengthAverage
        if (slv < 10):
            filter = (10 - slv) * 2
            if filter > 6: filter = 6
        elif slv > 23:
            filter = (slv - 23) * 3
            if filter > 9: filter = 9
        passage.rateScore -= filter
        
        # ᄌᄒ￝ᅥᄑᄒᄡᅧᄈᄂᄉ￷ᅰ 
        filter = 0
        wlv = passage.lf.wordLengthAverage
        if wlv < 4:
            filter = (4 - wlv) * 10
        passage.rateScore -= filter  
        
        # ᄌᄒ￝ᅧᄉᄡᅧᅥᄑᄒᄈᄂᄊ￈ᄉ￷ᅰ
        filter = 0
        rwlv = passage.lf.noneStopWordLengthAverage
        if rwlv < 5.5:
            filter = (5.5 - rwlv) * 10  
        passage.rateScore -= filter
        
        # ᄌᄒ￝ᄡᅧ￐ᅯᄆ￈￀�ᄉ￷ᅰ
        filter = 0
        nr = passage.lf.nounRatio
        if nr < 0.2:
            filter = (0.2 - nr) * 100
        elif nr > 0.35:
            filter = (nr - 0.35) * 100
        passage.rateScore -= filter        
        
        filter = 0
        vr = passage.lf.verbRatio
        if vr < 0.1:
            filter = (0.1 - vr) * 200
        elif vr > 0.2:
            filter = (vr - 0.2) * 200
        passage.rateScore -= filter     
        
        filter = 0
        ar = passage.lf.adjRatio
        if ar < 0.045:
            filter = (0.045 - ar) * 500
        passage.rateScore -= filter  
        
        filter = 0
        badRatioCount = 0   
        offsetRatio = 0       
        if (nr < 0.2) or (nr > 0.3):
            badRatioCount += 1
        else:
            offsetRatio += abs(nr - 0.25) / 0.1
        if (vr < 0.1) or (vr > 0.2):
            badRatioCount += 1
        else:
            offsetRatio += abs(vr - 0.15) / 0.1
        if (ar < 0.06) or (ar > 0.13):
            badRatioCount += 1
        else:
            offsetRatio += abs(ar - 0.095) / 0.14
        if badRatioCount == 0:
           if offsetRatio < 0.1:
                filter = passage.rateScore * 0.05
        elif badRatioCount == 1:
            if offsetRatio > 0.6:
                filter = - passage.rateScore * 0.05
        elif badRatioCount > 1:
            filter = - passage.rateScore * 0.02 * badRatioCount * badRatioCount
        passage.rateScore += filter
        passage.offsetRatio = offsetRatio
                            
        # ᄌᄒ￝ᅣᅳ￈￝ᅬ¢ᅨᅥᄊ￈ᄉ￷ᅰ
        if (passage.cf.lsaScore > 75) and (passage.cf.lsaSimilarity > 89) and (passage.rateScore > 75):
            passage.rateScore += 5
        if ((passage.cf.lsaScore < 70) and (passage.rateScore < 70)) and (passage.cf.lsaSimilarity > 89):
            passage.rateScore -=5
        filter = 0
        if ((passage.cf.lsaSimilarity <= 80) and (passage.cf.lsaSimilarity > 60)) or ((passage.cf.lsaSimilarityAll <= 56) and (passage.cf.lsaSimilarityAll > 32)):
            filter = (15 - abs(passage.cf.lsaSimilarity - 70) / 3.0)
#            if passage.rateScore < passage.cf.lsaScore:
#                passage.rateScore = passage.cf.lsaScore
        passage.rateScore += filter
        
        self.generateRateResult(passage)
        
        passage.rated = True
        endog[0] = passage.rateScore
        return [passage.rateScore]
Esempio n. 21
0
    def train(self, passages):
        # ᅯᄂᄡᆭ￀■ᅫᅣᅰᅡ
        i = 1
        for p in passages:
            #print "Passage ", i
            # ᄡᆭ￀■ᅫᅣᅰᅡ
            if not p.preprocessed: essayprepare.processPassage(p)
            i += 1
        
        # ￑ᄉ￁앿￐ᅪ
        passages.sort(cmp=lambda x,y: cmp(x.score, y.score), reverse=True)
        
        model = EssayModel()
        model.train(passages)
        self.models['1'] = model
        #print model.triGramDicts
        
        # ᅩ£￈고￘ᅰ￷
        self.extractor = FeatherExtractor(model)
        for p in passages:
            p.lf = self.extractor.extractLangFeather(p)
            p.cf = self.extractor.extractContentFeather(p)
            p.sf = self.extractor.extractStructureFeather(p)   
        
        # ᅧ¦ᄈ￶ᅩ￘ᅰ￷ᅱᄉ
        f = open('fs_train.txt', 'w')
        
        # ￉ᄈ￉ᅩ￘ᅰ￷ᅬ￲￁﾿
        endog = []
        exog = []
        labels = []
        for p in passages:
            score = int(p.score)
            #if score > 95: score = 95
            if score < 40: score = 40
            endog.append(score)
            x = self.__getFeatherList(p)
            exog.append(x)

            labels.append(p.label)
            
            f.write(p.id + ' ')
            f.write(str(p.score))
            for v in x:
                f.write(' ' + str(v))
            f.write('\n')
        
        f.close()       
        
        # SVM위￀¢ᅥ￷￑ᄉ￁ᄋ
        #self.svm_model = svmutil.svm_train(labels, exog, '-c 3')
        
        # ᅬ￟￐ᅯᄏ￘ᄍ←ᅣᆪ￐ᅪ￑ᄉ￁ᄋ  
        endog = np.array(endog)
        exog = np.array(exog)
#        print endog
#        print exog
        
#        self.m = np.mean(exog,axis=0)
#        print self.m
#        
#        T, P, e_var = PCA_svd(exog)   
#        print T
#        print P
#        print e_var
#        
#        r, c = P.shape
#        print r, c
#        for i in xrange(11, r):
#            for j in xrange(0, c):
#                P[i, j] = 0
#        print P
#        self.p = P
#        
#        xexog = dot(P, exog.transpose())
#        print xexog
#        print xexog.shape
#        
#        xxexog = xexog.transpose() 
        
        self.gls_model = sm.GLS(endog, exog)
        self.gls_model.fit()