Esempio n. 1
0
 def _fg(x):
     return func(x) if grad is None else func(x), grad(x)
Esempio n. 2
0
def getbundle(func, x0, grad=None, g0=None, samprad=1e-4, n=None):
    """
    Get bundle of n-1 gradients at points near x, in addition to g,
    which is gradient at x and goes in first column
    intended to be called by gradsampfixed

    Parameters
    ----------
    func: callable function on 1D arrays of length nvar
        function being optimized

    grad: callable function
        gradient of func

    x0: 1D array of len nvar, optional (default None)
        intial points, one per column

    g0: 1D array of len nvar, optional (default None)
        gradient at point x0

    samprad: float, optional (default 1e-4)
        sampling radius; this should be a small positive float

    n: int, optional (default min(100, 2 * nvar, nvar + 10))
        number of points and gradients to sample

    Returns
    -------
    xbundle: 2D array of shape (nvar, n)
        bundle of n points sampled in the samprand-ball around x0

    xbundle: 2D array of shape (nvar, n)
        bundle of n gradients sampled in the samprand-ball around x0

    Raises
    ------
    RuntimeError

    """
    def _fg(x):
        return func(x) if grad is None else (func(x), grad(x))

    x0 = np.ravel(x0)
    nvar = len(x0)
    n = min(100, min(2 * nvar, nvar + 10)) if n is None else n
    xbundle = np.ndarray((nvar, n))
    gbundle = np.ndarray((nvar, n))
    xbundle[..., 0] = x0
    gbundle[..., 0] = g0 if not g0 is None else _fg(x0)[1]
    for k in xrange(1, n):  # note the 1
        xpert = x0 + samprad * (np.random.rand(nvar) - 0.5
                                )  # uniform distribution
        f, g = _fg(xpert)
        count = 0
        # in particular, disallow infinite function values
        while np.isnan(f) or np.isinf(f) or np.any(np.isnan(g)) or np.any(
                np.isinf(g)):
            xpert = (x0 + xpert) / 2.  # contract back until feasible
            f, g = func(xpert), grad(xpert)
            count = count + 1
            if count > 100:  # should never happen, but just in case
                raise RuntimeError(
                    'getbundle: too many contractions needed to find finite'
                    ' func and grad values')

        xbundle[..., k] = xpert
        gbundle[..., k] = g

    return xbundle, gbundle
Esempio n. 3
0
 def _fg(x):
     return func(x) if grad is None else func(x), grad(x)
Esempio n. 4
0
def getbundle(func, x0, grad=None, g0=None, samprad=1e-4, n=None):
    """
    Get bundle of n-1 gradients at points near x, in addition to g,
    which is gradient at x and goes in first column
    intended to be called by gradsampfixed

    Parameters
    ----------
    func: callable function on 1D arrays of length nvar
        function being optimized

    grad: callable function
        gradient of func

    x0: 1D array of len nvar, optional (default None)
        intial points, one per column

    g0: 1D array of len nvar, optional (default None)
        gradient at point x0

    samprad: float, optional (default 1e-4)
        sampling radius; this should be a small positive float

    n: int, optional (default min(100, 2 * nvar, nvar + 10))
        number of points and gradients to sample

    Returns
    -------
    xbundle: 2D array of shape (nvar, n)
        bundle of n points sampled in the samprand-ball around x0

    xbundle: 2D array of shape (nvar, n)
        bundle of n gradients sampled in the samprand-ball around x0

    Raises
    ------
    RuntimeError

    """

    def _fg(x):
        return func(x) if grad is None else (func(x), grad(x))

    x0 = np.ravel(x0)
    nvar = len(x0)
    n = min(100, min(2 * nvar, nvar + 10)) if n is None else n
    xbundle = np.ndarray((nvar, n))
    gbundle = np.ndarray((nvar, n))
    xbundle[..., 0] = x0
    gbundle[..., 0] = g0 if not g0 is None else _fg(x0)[1]
    for k in xrange(1, n):  # note the 1
        xpert = x0 + samprad * (np.random.rand(nvar) - 0.5
                               )  # uniform distribution
        f, g = _fg(xpert)
        count = 0
        # in particular, disallow infinite function values
        while np.isnan(f) or np.isinf(f) or np.any(
            np.isnan(g)) or np.any(np.isinf(g)):
            xpert = (x0 + xpert) / 2.     # contract back until feasible
            f, g = func(xpert), grad(xpert)
            count = count + 1
            if count > 100:  # should never happen, but just in case
                raise RuntimeError(
                    'getbundle: too many contractions needed to find finite'
                    ' func and grad values')

        xbundle[..., k] = xpert
        gbundle[..., k] = g

    return xbundle, gbundle