Esempio n. 1
0
def run_metocean_forecasting_problem(train_file_path,
                                     test_file_path,
                                     forecast_length=1,
                                     is_visualise=False,
                                     timeout=5):
    # Prepare data for train and test
    ssh_history, ws_history, ssh_obs = prepare_input_data(
        train_file_path, test_file_path)

    historical_data = {
        'ws': ws_history,  # additional variable
        'ssh': ssh_history,  # target variable
    }

    fedot = Fedot(
        problem='ts_forecasting',
        task_params=TsForecastingParams(forecast_length=forecast_length),
        timeout=timeout,
        verbose_level=4)

    pipeline = fedot.fit(features=historical_data, target=ssh_history)
    fedot.forecast(historical_data, forecast_length=forecast_length)
    metric = fedot.get_metrics(target=ssh_obs)

    if is_visualise:
        pipeline.show()
        fedot.plot_prediction()

    return metric
Esempio n. 2
0
def test_multivariate_ts():
    forecast_length = 1

    file_path_train = 'cases/data/metocean/metocean_data_train.csv'
    full_path_train = os.path.join(str(fedot_project_root()), file_path_train)

    # a dataset for a final validation of the composed model
    file_path_test = 'cases/data/metocean/metocean_data_test.csv'
    full_path_test = os.path.join(str(fedot_project_root()), file_path_test)

    target_history, add_history, obs = prepare_input_data(
        full_path_train, full_path_test)

    historical_data = {
        'ws': add_history,  # additional variable
        'ssh': target_history,  # target variable
    }

    fedot = Fedot(
        problem='ts_forecasting',
        composer_params=composer_params,
        task_params=TsForecastingParams(forecast_length=forecast_length))
    fedot.fit(features=historical_data, target=target_history)
    forecast = fedot.forecast(historical_data, forecast_length=forecast_length)
    assert forecast is not None