Esempio n. 1
0
def test_classification_quality_improvement():
    # input data initialization
    train_data_path = f'{project_root()}/cases/data/scoring/scoring_train.csv'
    test_data_path = f'{project_root()}/cases/data/scoring/scoring_test.csv'

    problem = 'classification'

    baseline_model = Fedot(problem=problem)
    baseline_model.fit(features=train_data_path, target='target', predefined_model='xgboost')
    expected_baseline_quality = 0.823

    baseline_model.predict_proba(features=test_data_path)
    baseline_metrics = baseline_model.get_metrics()

    # Define parameters for composing
    composer_params = {'max_depth': 3,
                       'max_arity': 3,
                       'pop_size': 20,
                       'num_of_generations': 20,
                       'learning_time': 10,
                       'with_tuning': True}

    auto_model = Fedot(problem=problem, composer_params=composer_params, seed=42, verbose_level=4)
    auto_model.fit(features=train_data_path, target='target')
    auto_model.predict_proba(features=test_data_path)
    auto_metrics = auto_model.get_metrics()
    print(auto_metrics['roc_auc'])
    assert auto_metrics['roc_auc'] > baseline_metrics['roc_auc'] >= expected_baseline_quality
Esempio n. 2
0
def run_one_model_with_specific_evaluation_mod(train_data,
                                               test_data,
                                               mode: str = None):
    """
    Runs the example with one model svc.

    :param train_data: train data for pipeline training
    :param test_data: test data for pipeline training
    :param mode: pass gpu flag to make gpu evaluation
    """

    problem = 'classification'

    if mode == 'gpu':
        baseline_model = Fedot(problem=problem, preset='gpu')
    else:
        baseline_model = Fedot(problem=problem)
    svc_node_with_custom_params = PrimaryNode('svc')
    # the custom params are needed to make probability evaluation available
    # otherwise an error is occurred
    svc_node_with_custom_params.custom_params = dict(kernel='rbf',
                                                     C=10,
                                                     gamma=1,
                                                     cache_size=2000,
                                                     probability=True)
    preset_pipeline = Pipeline(svc_node_with_custom_params)

    start = datetime.now()
    baseline_model.fit(features=train_data,
                       target='target',
                       predefined_model=preset_pipeline)
    print(f'Completed with custom params in: {datetime.now() - start}')

    baseline_model.predict(features=test_data)
    print(baseline_model.get_metrics())
Esempio n. 3
0
def test_pandas_input_for_api():
    train_data, test_data, threshold = get_dataset('classification')

    train_features = pd.DataFrame(train_data.features)
    train_target = pd.Series(train_data.target)

    test_features = pd.DataFrame(test_data.features)
    test_target = pd.Series(test_data.target)

    # task selection, initialisation of the framework
    baseline_model = Fedot(problem='classification')

    # fit model without optimisation - single XGBoost node is used
    baseline_model.fit(features=train_features,
                       target=train_target,
                       predefined_model='xgboost')

    # evaluate the prediction with test data
    prediction = baseline_model.predict(features=test_features)

    assert len(prediction) == len(test_target)

    # evaluate quality metric for the test sample
    baseline_metrics = baseline_model.get_metrics(metric_names='f1',
                                                  target=test_target)

    assert baseline_metrics['f1'] > 0
Esempio n. 4
0
def run_ts_forecasting_example(with_plot=True,
                               with_pipeline_vis=True,
                               timeout=None):
    train_data_path = f'{fedot_project_root()}/examples/data/salaries.csv'

    target = pd.read_csv(train_data_path)['target']

    # Define forecast length and define parameters - forecast length
    forecast_length = 30
    task_parameters = TsForecastingParams(forecast_length=forecast_length)

    # init model for the time series forecasting
    model = Fedot(problem='ts_forecasting',
                  task_params=task_parameters,
                  timeout=timeout)

    # run AutoML model design in the same way
    pipeline = model.fit(features=train_data_path, target='target')
    if with_pipeline_vis:
        pipeline.show()

    # use model to obtain forecast
    forecast = model.predict(features=train_data_path)

    print(
        model.get_metrics(metric_names=['rmse', 'mae', 'mape'], target=target))

    # plot forecasting result
    if with_plot:
        model.plot_prediction()

    return forecast
Esempio n. 5
0
def run_metocean_forecasting_problem(train_file_path,
                                     test_file_path,
                                     forecast_length=1,
                                     is_visualise=False,
                                     timeout=5):
    # Prepare data for train and test
    ssh_history, ws_history, ssh_obs = prepare_input_data(
        train_file_path, test_file_path)

    historical_data = {
        'ws': ws_history,  # additional variable
        'ssh': ssh_history,  # target variable
    }

    fedot = Fedot(
        problem='ts_forecasting',
        task_params=TsForecastingParams(forecast_length=forecast_length),
        timeout=timeout,
        verbose_level=4)

    pipeline = fedot.fit(features=historical_data, target=ssh_history)
    fedot.forecast(historical_data, forecast_length=forecast_length)
    metric = fedot.get_metrics(target=ssh_obs)

    if is_visualise:
        pipeline.show()
        fedot.plot_prediction()

    return metric
Esempio n. 6
0
def test_api_predict_correct(task_type: str = 'classification'):
    train_data, test_data, _ = get_dataset(task_type)
    model = Fedot(problem=task_type, composer_params=composer_params)
    fedot_model = model.fit(features=train_data)
    prediction = model.predict(features=test_data)
    metric = model.get_metrics()

    assert isinstance(fedot_model, Pipeline)
    assert len(prediction) == len(test_data.target)
    assert metric['f1'] > 0
Esempio n. 7
0
def run_classification_example(timeout=None):
    train_data_path = f'{fedot_project_root()}/cases/data/scoring/scoring_train.csv'
    test_data_path = f'{fedot_project_root()}/cases/data/scoring/scoring_test.csv'

    problem = 'classification'

    baseline_model = Fedot(problem=problem, timeout=timeout)
    baseline_model.fit(features=train_data_path,
                       target='target',
                       predefined_model='xgboost')

    baseline_model.predict(features=test_data_path)
    print(baseline_model.get_metrics())

    auto_model = Fedot(problem=problem, seed=42, timeout=timeout)
    auto_model.fit(features=train_data_path, target='target')
    prediction = auto_model.predict_proba(features=test_data_path)
    print(auto_model.get_metrics())

    return prediction
Esempio n. 8
0
def run_regression_example():
    data_path = f'{fedot_project_root()}/cases/data/cholesterol/cholesterol.csv'

    data = InputData.from_csv(data_path)
    train, test = train_test_data_setup(data)

    problem = 'regression'

    baseline_model = Fedot(problem=problem)
    baseline_model.fit(features=train, predefined_model='xgbreg')

    baseline_model.predict(features=test)
    print(baseline_model.get_metrics())

    auto_model = Fedot(problem=problem, seed=42)
    auto_model.fit(features=train, target='target')
    prediction = auto_model.predict(features=test)
    print(auto_model.get_metrics())

    return prediction
Esempio n. 9
0
def test_multiobj_for_api():
    train_data, test_data, _ = get_dataset('classification')
    composer_params['composer_metric'] = ['f1', 'node_num']

    model = Fedot(problem='classification', composer_params=composer_params)
    model.fit(features=train_data)
    prediction = model.predict(features=test_data)
    metric = model.get_metrics()

    assert len(prediction) == len(test_data.target)
    assert metric['f1'] > 0
    assert model.best_models is not None
Esempio n. 10
0
def test_api_forecast_correct(task_type: str = 'ts_forecasting'):
    # The forecast length must be equal to 12
    forecast_length = 12
    train_data, test_data, _ = get_dataset(task_type)
    model = Fedot(problem='ts_forecasting', composer_params=composer_params,
                  task_params=TsForecastingParams(forecast_length=forecast_length))

    model.fit(features=train_data)
    ts_forecast = model.predict(features=train_data)
    metric = model.get_metrics(target=test_data.target, metric_names='rmse')

    assert len(ts_forecast) == forecast_length
    assert metric['rmse'] >= 0
Esempio n. 11
0
def test_api_forecast_numpy_input_with_static_model_correct(task_type: str = 'ts_forecasting'):
    forecast_length = 10
    train_data, test_data, _ = get_dataset(task_type)
    model = Fedot(problem='ts_forecasting',
                  task_params=TsForecastingParams(forecast_length=forecast_length))

    # Define chain for prediction
    node_lagged = PrimaryNode('lagged')
    chain = Chain(SecondaryNode('linear', nodes_from=[node_lagged]))

    model.fit(features=train_data.features,
              target=train_data.target,
              predefined_model=chain)
    ts_forecast = model.predict(features=train_data)
    metric = model.get_metrics(target=test_data.target, metric_names='rmse')

    assert len(ts_forecast) == forecast_length
    assert metric['rmse'] >= 0
Esempio n. 12
0
def test_baseline_with_api():
    train_data, test_data, threshold = get_dataset('classification')

    # task selection, initialisation of the framework
    baseline_model = Fedot(problem='classification')

    # fit model without optimisation - single XGBoost node is used
    baseline_model.fit(features=train_data, target='target', predefined_model='xgboost')

    # evaluate the prediction with test data
    prediction = baseline_model.predict_proba(features=test_data)

    assert len(prediction) == len(test_data.target)

    # evaluate quality metric for the test sample
    baseline_metrics = baseline_model.get_metrics(metric_names='f1')

    assert baseline_metrics['f1'] > 0
Esempio n. 13
0
def run_credit_scoring_problem(train_file_path, test_file_path,
                               timeout: float = 5.0,
                               is_visualise=False,
                               with_tuning=False,
                               cache_path=None):

    preset = 'light_tun' if with_tuning else 'light'
    automl = Fedot(problem='classification', timeout=timeout, verbose_level=4,
                   preset=preset)
    automl.fit(train_file_path)
    predict = automl.predict(test_file_path)
    metrics = automl.get_metrics()

    if is_visualise:
        automl.current_pipeline.show()

    print(f'Composed ROC AUC is {round(metrics["roc_auc"], 3)}')

    return metrics["roc_auc"]
Esempio n. 14
0
def test_cv_api_correct():
    composer_params = {
        'max_depth': 1,
        'max_arity': 2,
        'timeout': 0.0001,
        'preset': 'ultra_light',
        'cv_folds': 10
    }
    task = Task(task_type=TaskTypesEnum.classification)
    dataset_to_compose, dataset_to_validate = get_data(task)
    model = Fedot(problem='classification',
                  composer_params=composer_params,
                  verbose_level=2)
    fedot_model = model.fit(features=dataset_to_compose)
    prediction = model.predict(features=dataset_to_validate)
    metric = model.get_metrics()

    assert isinstance(fedot_model, Pipeline)
    assert len(prediction) == len(dataset_to_validate.target)
    assert metric['f1'] > 0
Esempio n. 15
0
def run_pipeline_with_specific_evaluation_mode(train_data: InputData,
                                               test_data: InputData,
                                               mode: str = None):
    """
    Runs the example with 3-node pipeline.

    :param train_data: train data for pipeline training
    :param test_data: test data for pipeline training
    :param mode: pass gpu flag to make gpu evaluation
    """
    problem = 'classification'

    if mode == 'gpu':
        baseline_model = Fedot(problem=problem, preset='gpu')
    else:
        baseline_model = Fedot(problem=problem)

    svc_node_with_custom_params = PrimaryNode('svc')
    svc_node_with_custom_params.custom_params = dict(kernel='rbf',
                                                     C=10,
                                                     gamma=1,
                                                     cache_size=2000,
                                                     probability=True)

    logit_node = PrimaryNode('logit')

    rf_node = SecondaryNode(
        'rf', nodes_from=[svc_node_with_custom_params, logit_node])

    preset_pipeline = Pipeline(rf_node)

    start = datetime.now()
    baseline_model.fit(features=train_data,
                       target='target',
                       predefined_model=preset_pipeline)
    print(f'Completed with custom params in: {datetime.now() - start}')

    baseline_model.predict(features=test_data)
    print(baseline_model.get_metrics())
Esempio n. 16
0
def run_classification_multiobj_example(with_plot=True):
    train_data = pd.read_csv(
        f'{project_root()}/examples/data/Hill_Valley_with_noise_Training.data')
    test_data = pd.read_csv(
        f'{project_root()}/examples/data/Hill_Valley_with_noise_Testing.data')
    target = test_data['class']
    del test_data['class']
    problem = 'classification'

    auto_model = Fedot(problem=problem,
                       learning_time=2,
                       preset='light',
                       composer_params={'metric': ['f1', 'node_num']},
                       seed=42)
    auto_model.fit(features=train_data, target='class')
    prediction = auto_model.predict_proba(features=test_data)
    print(auto_model.get_metrics(target))

    if with_plot:
        auto_model.best_models.show()

    return prediction
Esempio n. 17
0
def run_additional_learning_example():
    train_data_path = f'{fedot_project_root()}/cases/data/scoring/scoring_train.csv'
    test_data_path = f'{fedot_project_root()}/cases/data/scoring/scoring_test.csv'

    train_data = pd.read_csv(train_data_path)
    test_data = pd.read_csv(test_data_path)
    test_data_target = test_data['target']
    del test_data['target']

    problem = 'classification'

    auto_model = Fedot(problem=problem,
                       seed=42,
                       preset='light',
                       timeout=5,
                       composer_params={
                           'initial_pipeline':
                           Pipeline(
                               SecondaryNode(
                                   'logit',
                                   nodes_from=[PrimaryNode('scaling')]))
                       })

    auto_model.fit(features=deepcopy(train_data.head(1000)), target='target')
    auto_model.predict_proba(features=deepcopy(test_data))
    print('auto_model',
          auto_model.get_metrics(target=deepcopy(test_data_target)))

    prev_model = auto_model.current_pipeline
    prev_model.show()

    prev_model.unfit()
    atomized_model = Pipeline(
        SecondaryNode(operation_type=AtomizedModel(prev_model),
                      nodes_from=[PrimaryNode('scaling')]))
    non_atomized_model = deepcopy(prev_model)

    train_data = train_data.head(5000)
    timeout = 1

    auto_model_from_atomized = Fedot(
        problem=problem,
        seed=42,
        preset='light',
        timeout=timeout,
        composer_params={'initial_pipeline': atomized_model},
        verbose_level=2)
    auto_model_from_atomized.fit(features=deepcopy(train_data),
                                 target='target')
    auto_model_from_atomized.predict_proba(features=deepcopy(test_data))
    auto_model_from_atomized.current_pipeline.show()
    print('auto_model_from_atomized',
          auto_model_from_atomized.get_metrics(deepcopy(test_data_target)))

    auto_model_from_pipeline = Fedot(
        problem=problem,
        seed=42,
        preset='light',
        timeout=timeout,
        composer_params={'initial_pipeline': non_atomized_model},
        verbose_level=2)
    auto_model_from_pipeline.fit(features=deepcopy(train_data),
                                 target='target')
    auto_model_from_pipeline.predict_proba(features=deepcopy(test_data))
    auto_model_from_pipeline.current_pipeline.show()
    print('auto_model_from_pipeline',
          auto_model_from_pipeline.get_metrics(deepcopy(test_data_target)))