Esempio n. 1
0
def test_basic_gecko_adjustment():
    in_model = {'P00549': 0.1, 'P31373': 0.1, 'P31382': 0.1, 'P39708': 0.1, 'P39714': 0.1, 'P39726': 0.1, 'Q01574': 0.1}
    not_in_model = {'P10591': 0.1, 'P31383': 0.1, 'P32471': 0.1}
    measurements = pd.concat([pd.Series(in_model), pd.Series(not_in_model)])
    model = GeckoModel('multi-pool')
    model.limit_proteins(fractions=pd.Series(measurements))
    sol = model.optimize()
    assert sol.objective_value > 0.05
    assert len(model.proteins) - len(model.pool_proteins) - len(in_model) == 0
    assert all(rxn.upper_bound > 0 for rxn in model.individual_protein_exchanges)
Esempio n. 2
0
def simulate_wt():
    model = GeckoModel('single-pool')
    res = model.optimize()
    print(res)
    #for p in model.proteins:
    p = "P38066"
    with model:
        r = model.reactions.get_by_id("draw_prot_" + p)

        lb = r.lower_bound
        ub = r.upper_bound
        r.lower_bound = 0
        r.upper_bound = 0.000001
        res = model.optimize()

        #r.knock_out()
        #res = model.optimize()
        print(p + " wt simulation1 " + str(res.objective_value))

    print(str(r.lower_bound) + " --> " + str(r.upper_bound))
Esempio n. 3
0
def analysis_ko(resFileName):
    levels = [0, 1e-10, 1e-8, 1e-6, 1e-4, 1e-2, 0.1]

    model = GeckoModel('single-pool')
    df = pandas.DataFrame(index=range(100), columns=["ko", "Biomass"])

    for i in range(100):
        proteins = random.sample(model.proteins, 10)
        dic = {p: 0 for p in proteins}
        model.limit_proteins(pandas.Series(dic))
        res = model.optimize()
        df.loc[i] = (dic, res.objective_value)
    df.to_csv(resFileName)
Esempio n. 4
0
def simulate_wt_multi():
    model = GeckoModel('multi-pool')
    import pandas
    some_measurements = pandas.Series({
        'P00549': 0.1,
        'P31373': 0.1,
        'P31382': 0.1
    })
    model = GeckoModel('multi-pool')
    model.limit_proteins(some_measurements)
    res = model.optimize()

    print(" wt simulation1 ", res.objective_value)
    for r in model.reactions:
        print(r.id, " --> ", res.fluxes[r.id])
Esempio n. 5
0
def essential_prot_scale():
    model = GeckoModel("single-pool")
    model.solver = 'cplex'
    print("Essential proteins with cplex, scale model (single-pool)")
    for r in model.reactions:
        r.lower_bound = r.lower_bound * 100000
        r.upper_bound = r.upper_bound * 100000

    for p in model.proteins:
        with model as m:
            r = model.reactions.get_by_id("draw_prot_" + p)
            r.lower_bound = 0
            r.upper_bound = 0
            res = model.optimize()

        print(p, ",", res.objective_value)
Esempio n. 6
0
def simulate_prot():
    model = GeckoModel("single-pool")
    model.solver = 'cplex'

    with model:
        #       for p in ["P53685","Q01574"]:
        for p in ['P33421']:
            r = model.reactions.get_by_id("draw_prot_" + p)
            r.lower_bound = 0
            r.upper_bound = 0
        res = model.optimize()
        print(" --> growth " + str(res.objective_value))
        print(" --> r_2111 " + str(res.fluxes["r_2111"]))
        print(" --> r_2056 " + str(res.fluxes["r_2056"]))
        print(" --> r_1714 " + str(res.fluxes["r_1714_REV"]))

    print(" ------------ ")
Esempio n. 7
0
def analysis_growth(resFileName):
    levels = [0, 1e-10, 1e-8, 1e-6, 1e-4, 1e-2, 0.1]
    model = GeckoModel('single-pool')
    proteins = model.proteins
    df = pandas.DataFrame(index=proteins, columns=levels)

    for p in proteins:
        print(p)
        if p != "P38066":
            for level in levels:
                r = model.reactions.get_by_id("draw_prot_" + p)
                lb = r.lower_bound
                ub = r.upper_bound
                r.lower_bound = 0
                r.upper_bound = level
                res = model.optimize()
                df.loc[p][level] = res.objective_value
                r.lower_bound = lb
                r.upper_bound = ub
    df.to_csv(resFileName)