Esempio n. 1
0
def essential_prot():
    model = GeckoModel("single-pool")
    model.solver = 'cplex'
    print("Essential proteins with cplex, normal model (single-pool)")
    for p in model.proteins:
        with model as m:
            r = m.reactions.get_by_id("draw_prot_" + p)
            r.lower_bound = 0
            r.upper_bound = 0
            res = m.optimize()
        if (res.objective_value <= 1e-10):
            print(p, ",", res.objective_value)
Esempio n. 2
0
def essential_prot_scale():
    model = GeckoModel("single-pool")
    model.solver = 'cplex'
    print("Essential proteins with cplex, scale model (single-pool)")
    for r in model.reactions:
        r.lower_bound = r.lower_bound * 100000
        r.upper_bound = r.upper_bound * 100000

    for p in model.proteins:
        with model as m:
            r = model.reactions.get_by_id("draw_prot_" + p)
            r.lower_bound = 0
            r.upper_bound = 0
            res = model.optimize()

        print(p, ",", res.objective_value)
Esempio n. 3
0
def simulate_prot():
    model = GeckoModel("single-pool")
    model.solver = 'cplex'

    with model:
        #       for p in ["P53685","Q01574"]:
        for p in ['P33421']:
            r = model.reactions.get_by_id("draw_prot_" + p)
            r.lower_bound = 0
            r.upper_bound = 0
        res = model.optimize()
        print(" --> growth " + str(res.objective_value))
        print(" --> r_2111 " + str(res.fluxes["r_2111"]))
        print(" --> r_2056 " + str(res.fluxes["r_2056"]))
        print(" --> r_1714 " + str(res.fluxes["r_1714_REV"]))

    print(" ------------ ")
Esempio n. 4
0
def analysis_growth(resFileName, scale=False):
    model = GeckoModel('single-pool')
    model.solver = 'cplex'

    #scale model
    if scale:
        for r in model.reactions:
            r.upper_bound = r.upper_bound * 100000
            r.lower_bound = r.lower_bound * 100000

    proteins = model.proteins
    df = pandas.DataFrame(index=proteins, columns=range(100))
    for i in range(100):
        print(i)
        for p in proteins:
            with model as m:
                r = m.reactions.get_by_id("draw_prot_" + p)
                r.lower_bound = 0
                r.upper_bound = 0
                res = m.optimize()
                df.loc[p][i] = 0 if res.objective_value < 1e-4 else 1
    df.to_csv(resFileName)