from get_csv_data import HandleData data = HandleData(total_data=880,data_per_angle=110,num_angles=8) antenna_data,label_data = data.get_synthatic_data(test_data=False) data_test = HandleData(total_data=80, data_per_angle=10, num_angles=8) antenna_data_test, label_data_test = data_test.get_synthatic_data(test_data=True) data_test_noise = HandleData(total_data=120, data_per_angle=120, num_angles=8) antenna_data_test_noise, label_data_test_noise = data_test_noise.get_synthatic_data(test_data=-1) # DAE_out = getDAE([antenna_data,antenna_data_test,antenna_data_test_noise]) DAE_out = [genfromtxt('TrainDOA_Data.csv', delimiter=','),genfromtxt('TestDOA_Data.csv', delimiter=','),genfromtxt('TestDOA_Noise_Data.csv', delimiter=',')] data.data_set = DAE_out[0] antenna_data = DAE_out[0] antenna_data_test = DAE_out[1] data_test.data_set = DAE_out[1] antenna_data_test_noise = DAE_out[2] data_test_noise.data_set = DAE_out[2] # np.savetxt("TrainDOA_Data.csv", DAE_out[0], delimiter=",") # np.savetxt("TestDOA_Data.csv", DAE_out[1], delimiter=",") # np.savetxt("TestDOA_Noise_Data.csv", DAE_out[2], delimiter=",") # # antenna_data = genfromtxt('TrainDOA_Data.csv', delimiter=',') # data.data_set = antenna_data #
return out_layer if __name__ == "__main__": data = HandleData(total_data=880, data_per_angle=110, num_angles=8) antenna_data, label_data = data.get_synthatic_data(test_data=False) data_test = HandleData(total_data=80, data_per_angle=10, num_angles=8) antenna_data_test, label_data_test = data_test.get_synthatic_data( test_data=True) DAE_out = getDAE([ antenna_data, antenna_data_test ]) # get denoising autoencoder outputs for the train and test data data.data_set = DAE_out[0] antenna_data = DAE_out[0] antenna_data_test = DAE_out[1] data_test.data_set = DAE_out[1] TRAIN = False # Parameters learning_rate = 0.0001 training_epochs = 2000 batch_size = 5 display_step = 1 # Network Parameters n_hidden_1 = 12 # 1st layer number of features n_hidden_2 = 12 # 2nd layer number of features