示例#1
0
from get_csv_data import HandleData

data = HandleData(total_data=880,data_per_angle=110,num_angles=8)
antenna_data,label_data = data.get_synthatic_data(test_data=False)

data_test = HandleData(total_data=80, data_per_angle=10, num_angles=8)
antenna_data_test, label_data_test = data_test.get_synthatic_data(test_data=True)

data_test_noise = HandleData(total_data=120, data_per_angle=120, num_angles=8)
antenna_data_test_noise, label_data_test_noise = data_test_noise.get_synthatic_data(test_data=-1)

# DAE_out = getDAE([antenna_data,antenna_data_test,antenna_data_test_noise])
DAE_out = [genfromtxt('TrainDOA_Data.csv', delimiter=','),genfromtxt('TestDOA_Data.csv', delimiter=','),genfromtxt('TestDOA_Noise_Data.csv', delimiter=',')]

data.data_set = DAE_out[0]
antenna_data = DAE_out[0]

antenna_data_test = DAE_out[1]
data_test.data_set = DAE_out[1]

antenna_data_test_noise = DAE_out[2]
data_test_noise.data_set = DAE_out[2]

# np.savetxt("TrainDOA_Data.csv", DAE_out[0], delimiter=",")
# np.savetxt("TestDOA_Data.csv", DAE_out[1], delimiter=",")
# np.savetxt("TestDOA_Noise_Data.csv", DAE_out[2], delimiter=",")
#
# antenna_data = genfromtxt('TrainDOA_Data.csv', delimiter=',')
# data.data_set = antenna_data
#
示例#2
0
    return out_layer


if __name__ == "__main__":
    data = HandleData(total_data=880, data_per_angle=110, num_angles=8)
    antenna_data, label_data = data.get_synthatic_data(test_data=False)

    data_test = HandleData(total_data=80, data_per_angle=10, num_angles=8)
    antenna_data_test, label_data_test = data_test.get_synthatic_data(
        test_data=True)

    DAE_out = getDAE([
        antenna_data, antenna_data_test
    ])  # get denoising autoencoder outputs for the train and test data

    data.data_set = DAE_out[0]
    antenna_data = DAE_out[0]

    antenna_data_test = DAE_out[1]
    data_test.data_set = DAE_out[1]

    TRAIN = False

    # Parameters
    learning_rate = 0.0001
    training_epochs = 2000
    batch_size = 5
    display_step = 1
    # Network Parameters
    n_hidden_1 = 12  # 1st layer number of features
    n_hidden_2 = 12  # 2nd layer number of features