Esempio n. 1
0
def test_chain():
    periodic = True
    # periodic = False
    graph = gt_gen.lattice([1, 200], periodic=periodic)
    if periodic:
        figure_title = 'line_periodic'
    else:
        figure_title = 'line_non-periodic'

    n = graph.num_vertices()
    location1 = 0.2 * n
    location2 = n - location1
    jump = 1e-3
    weight = graph.new_edge_property('double', vals=1)
    e1 = graph.edge(location1, location1 + 1)
    weight[e1] = jump
    e2 = graph.edge(location2 - 1, location2)
    weight[e2] = jump

    pos_x = np.arange(n)
    pos_y = np.zeros((n,))
    v_pos = graph.new_vertex_property('vector<double>',
                                      vals=np.vstack((pos_x, pos_y)).T)
    v_text = graph.new_vertex_property('string')
    for v in graph.vertices():
        v_text[v] = pos_x[graph.vertex_index[v]]
    palette = sns.color_palette('Set1', n_colors=2)
    cmap = colors.ListedColormap(palette)
    gt_draw.graph_draw(graph, pos=v_pos, edge_color=weight, ecmap=cmap,
                       edge_pen_width=.5, vertex_fill_color='w', vertex_size=2,
                       vertex_text=v_text, vertex_font_size=1,
                       output=figure_title + '_graph.pdf')

    x_signal1 = np.cos(np.linspace(0, 4 * np.pi, location1))
    x_signal2 = np.cos(np.linspace(0, 50 * np.pi, n - 2 * location1))
    x_signal3 = np.cos(np.linspace(0, 8 * np.pi, location1))
    x_signal = np.hstack([x_signal1, x_signal2, x_signal3])

    palette = sns.color_palette('Set1', n_colors=3)
    plt.figure()
    markerline, stemlines, baseline = plt.stem(x_signal, markerfmt=' ')
    plt.setp(stemlines, color=palette[1], linewidth=1.5)
    plt.setp(baseline, color='k')
    plt.savefig(figure_title + '_signal.pdf', dpi=300)

    n_eigs = graph.num_vertices() - 1
    tau = 200
    alpha = -1e-4

    factories = [spec.ConvolutionSGFT(graph, n_eigs, tau, weight=weight),
                 spec.PageRankSGFT(graph, n_eigs, alpha, weight=weight),
                 spec.ConvolutionSGFT(graph, n_eigs, tau, weight=None),
                 spec.PageRankSGFT(graph, n_eigs, alpha, weight=None)]

    sgft.comparison.compare_spectrograms(factories, x_signal, graph, v_pos,
                                         file_name=figure_title)
    sgft.comparison.compare_localization(factories, location1, graph, v_pos,
                                         file_name=figure_title)
Esempio n. 2
0
def test_main():
    g = lattice((5, 5))

    for n, c in [(0, 1), (10, 5), (g.num_vertices(), 1)]:
        for _ in range(c):
            obs = np.random.choice(np.arange(g.num_vertices()),
                                   g.num_vertices(),
                                   replace=False)
            t = min_steiner_tree(g, obs)
            assert is_tree(t)
            assert set(obs).issubset(set(map(int, t.vertices())))
def test_unweighted():
    g = lattice((5, 5))

    for n, c in [(10, 5), (g.num_vertices(), 1)]:
        # repeat `c` rounds, using `n` terminals
        for _ in range(c):
            obs = np.random.choice(np.arange(g.num_vertices()), n,
                                   replace=False)
            t = min_steiner_tree(g, obs)
            assert is_tree(t)
            assert set(obs).issubset(set(map(int, t.vertices())))
Esempio n. 4
0
def g():
    graph = remove_filters(lattice((10, 10)))

    graph.set_directed(True)
    edges_iter = list(graph.edges())
    for e in edges_iter:
        graph.add_edge(e.target(), e.source())

    ew = graph.new_edge_property('float')
    ew.a = np.random.random(graph.num_edges()) * 0.2 + 0.8
    graph.edge_properties['weights'] = ew

    return preprocess(graph)
def load_graph_by_name(name, weighted=False, suffix=''):
    suffix = suffix.strip()
    if name == 'lattice':
        shape = (10, 10)
        g = lattice(shape)
    else:
        if weighted:
            path = 'data/{}/graph_weighted{}.gt'.format(name, suffix)
        else:
            path = 'data/{}/graph{}.gt'.format(name, suffix)
        print('load graph from {}'.format(path))
        g = load_graph(path)
    # assert not g.is_directed()
    return remove_filters(g)  # add shell
Esempio n. 6
0
def test_chain():
    graph = gt_gen.lattice([1, 1000], periodic=False)
    # gt_draw.graph_draw(graph)

    jump = 1e-3
    weight = graph.new_edge_property('double', vals=1)
    e1 = graph.edge(300, 301)
    weight[e1] = jump
    e1 = graph.edge(699, 700)
    weight[e1] = jump# + 0.01

    for e in graph.edges():
        # weight[e] += min(abs(0.3 * np.random.randn()), 1)
        if e.source() == 300 or e.source() == 699:
            print e, weight[e]

    n_eigs = 100
    alpha = -1e-10

    factory_weighted = ppr.PersonalizedPageRank(graph, n_eigs, weight=weight)
    factory_unweighted = ppr.PersonalizedPageRank(graph, n_eigs, weight=None)

    spectrogram_weighted = np.zeros((graph.num_vertices(), n_eigs))
    spectrogram_unweighted = np.zeros((graph.num_vertices(), n_eigs))
    t = timeit.default_timer()
    for v in range(graph.num_vertices()):
        _, loadings_weighted = factory_weighted.vector([graph.vertex(v)], alpha)
        _, loadings_unweighted = factory_unweighted.vector([graph.vertex(v)],
                                                           alpha)
        spectrogram_weighted[v, :] = loadings_weighted
        spectrogram_unweighted[v, :] = loadings_unweighted
    print timeit.default_timer() - t
    spectrogram_weighted = np.abs(spectrogram_weighted)
    spectrogram_unweighted = np.abs(spectrogram_unweighted)
    spectrogram_weighted /= np.atleast_2d(np.sum(spectrogram_weighted, axis=1)).T
    spectrogram_unweighted /= np.atleast_2d(np.sum(spectrogram_unweighted, axis=1)).T

    palette = sns.color_palette('RdBu_r', n_colors=256)
    cmap = colors.ListedColormap(palette, N=256)

    plt.figure()
    plt.subplot(121)
    plt.imshow(spectrogram_weighted, interpolation='none', cmap=cmap)
    plt.title('Weighted')
    plt.axis('tight')
    plt.subplot(122)
    plt.imshow(spectrogram_unweighted, interpolation='none', cmap=cmap)
    plt.title('Unweighted')
    plt.axis('tight')
Esempio n. 7
0
def batonGraph(drawGraph=False):
    '''
    A graph with NO symmetries. 
    '''
    g = generation.lattice((9, 1))
    v = g.add_vertex()
    g.add_edge(v, g.vertex(6))

    if drawGraph == True:
        draw.graph_draw(g,
                        vertex_text=g.vertex_index,
                        edge_color="black",
                        output="batton.pdf")

    return g
Esempio n. 8
0
def lattice(n1: int, n2: int):
    """
    Build 2D lattice graph

    Parameters
    ----------
    n1: int
        Number of nodes in dimension 1
    n2: int
        Number of nodes in dimension 2

    Returns
    -------
    Graph
        Lattice graph
    """
    return generation.lattice((n1, n2))
def test_weighted():
    g = lattice((5, 5))

    # assign some random weight
    p = g.new_edge_property('float')
    weights = np.random.random(g.num_edges())
    p.a = (-np.log(weights))
    
    for n, c in [(10, 5), (g.num_vertices(), 1)]:
        # repeat `c` rounds, using `n` terminals
        for _ in range(c):
            obs = np.random.choice(np.arange(g.num_vertices()), n,
                                   replace=False)
            t = min_steiner_tree(g, obs, p)
            # print(t)
            assert is_tree(t)
            assert set(obs).issubset(set(map(int, t.vertices())))
Esempio n. 10
0
def test_contract_graph_by_nodes():
    def get_weight_by_edges(g, weights, edges):
        return [weights[g.edge(u, v)] for u, v in edges]
    
    # weighted graph
    g = lattice((2, 2))
    weights = g.new_edge_property('float')
    for e in g.edges():
        weights[e] = int(e.target())

    # contract 0 and 1
    cg, new_weights = contract_graph_by_nodes(g, [0, 1], weights)
    assert set(extract_nodes(cg)) == set(range(3))
    edges = [(0, 0), (0, 1), (0, 2), (1, 2)]
    assert set(extract_edges(cg)) == set(edges)
    assert_almost_equal(get_weight_by_edges(cg, new_weights, edges),
                        [1, 2, 3, 3])

    # contract 0, 1 and 2
    cg, new_weights = contract_graph_by_nodes(g, [0, 1, 2], weights)
    assert set(extract_nodes(cg)) == set(range(2))
    edges = [(0, 0), (0, 1)]
    assert set(extract_edges(cg)) == set(edges)
    assert_almost_equal(get_weight_by_edges(cg, new_weights, edges),
                        [3, 6])

    # contract all nodes
    cg, new_weights = contract_graph_by_nodes(g, [0, 1, 2, 3], weights)
    assert set(extract_nodes(cg)) == {0}
    assert set(extract_edges(cg)) == {(0, 0)}
    assert_almost_equal(new_weights.a, [9])

    # contract just 1
    cg, new_weights = contract_graph_by_nodes(g, [0], weights)
    assert set(extract_nodes(cg)) == set(extract_nodes(g))
    assert set(extract_edges(cg)) == set(extract_edges(g))
    assert_almost_equal(new_weights.a, weights.a)
Esempio n. 11
0
def main(filename, f_seeds, b_seeds):
    # Load image
    print("Reading", filename, flush=True, end="...")
    img = cv3.imread(filename, cv3.IMREAD_COLOR)[:, :, ::-1]
    rows, cols, _ = img.shape
    print("Done")

    # Init graph
    print("Initializing graph", flush=True, end="...")
    g = gt.lattice((rows, cols))
    v_r = g.new_vertex_property('int')
    v_g = g.new_vertex_property('int')
    v_b = g.new_vertex_property('int')
    e_w = g.new_edge_property('float')
    print("Done")

    # Make a row,col map of the indices for easy access
    dex = np.zeros((rows, cols), dtype='int')
    np.ravel(dex)[:] = range(rows * cols)

    # Load vertex property arrays with pixel values
    print("Loading pixel values", flush=True, end="...")
    v_r.a = np.ravel(img[:, :, 0])
    v_g.a = np.ravel(img[:, :, 1])
    v_b.a = np.ravel(img[:, :, 2])
    print("Done")

    # Weight n-link edges
    print("Setting n-link weights", flush=True, end="...")

    def n_weight(s_r, s_g, s_b, t_r, t_g, t_b):
        return 1.0 - 3.0**-0.5 * ((v_r[s] - v_r[t])**2 + (v_g[s] - v_g[t])**2 +
                                  (v_b[s] - v_b[t])**2) / 65536.0  # Scale to 1

    for e in g.edges():
        s, t = e.source(), e.target()
        e_w[e] = 0.13 * n_weight(v_r[s], v_g[s], v_b[s], v_r[t], v_g[t],
                                 v_b[t])
    print("Done")

    # Double up and make directed
    print("Converting to directed graph", flush=True, end="...")
    g.set_directed(True)
    g.add_edge_list([(e.target(), e.source(), e_w[e]) for e in g.edges()],
                    eprops=(e_w, ))
    print("Done")

    # Make t-link edges
    print("Making t-link edges", flush=True, end="...")
    f, b = g.add_vertex(2)
    for n in range(rows * cols):
        g.add_edge(f, n)
        g.add_edge(n, b)
    print("Done")

    # Seeds
    kde = KernalDensityEstimator([img[c] for c in f_seeds],
                                 [img[c] for c in b_seeds])

    # Weight t-link edges
    print("Setting t-link weights", flush=True, end="...")
    for row, col in product(range(rows), range(cols)):
        if (row, col) in f_seeds:
            e_w[g.edge(f, g.vertex(dex[row, col]))] = 1e9
            e_w[g.edge(g.vertex(dex[row, col]), b)] = 0.0
        elif (row, col) in b_seeds:
            e_w[g.edge(f, g.vertex(dex[row, col]))] = 0.0
            e_w[g.edge(g.vertex(dex[row, col]), b)] = 1e9
        else:
            (e_w[g.edge(f, g.vertex(dex[row, col]))],
             e_w[g.edge(g.vertex(dex[row, col]), b)]) = kde.probs(img[row,
                                                                      col])
    print("Done")

    # Perform the cut
    print("Making the cut", flush=True, end="...")
    res = gt.flow.boykov_kolmogorov_max_flow(g, f, b, e_w)
    cut = gt.flow.min_st_cut(g, f, e_w, res)
    print("Done")

    # Display the result
    print("Highlighting", flush=True, end="...")
    highlight = np.array((0.2, 0.8, 0.8))
    for row, col in product(range(rows), range(cols)):
        if not cut[g.vertex(dex[row, col])]:
            img[row, col] = 255 - highlight * (255 - img[row, col])
            # img[row, col] = (0, 0, 128)
    print("Done")

    display_image(img)

    return g, e_w, v_r, cut
    sample_steiner_trees(g,
                         obs,
                         method,
                         n_samples=1,
                         gi=gi,
                         return_tree_nodes=return_tree_nodes)
    te = time.time()
    return te - ts


def run(g, N, method, return_tree_nodes):
    t_sum = 0
    gi = util.from_gt(g, None)
    for i in tqdm(range(N), total=N):
        obs = np.random.choice(np.arange(g.num_vertices()), 10, replace=False)
        t_sum += wrapper_for_sampling_procedure(g, obs, method, gi,
                                                return_tree_nodes)
    print('{} took {:.2f} sec on average'.format(method, t_sum / N))


# return_tree_nodes plays a big difference here
# construting the GraphView is very time consuming

g_dim = 100
return_tree_nodes = True
g = lattice((g_dim, g_dim))

run(g, N, 'cut_naive', return_tree_nodes)
run(g, N, 'cut', return_tree_nodes)
run(g, N, 'loop_erased', return_tree_nodes)
import line_profiler

import numpy as np
from sample_pool import TreeSamplePool
from random_steiner_tree.util import from_gt
from graph_helpers import remove_filters
from core1 import query_score, prediction_error, matching_trees_cython
from core1_python import query_score as query_score_py, prediction_error as prediction_error_py, matching_trees
from graph_tool.generation import lattice



g = lattice((10, 10))
gv = remove_filters(g)
gi = from_gt(g)
pool = TreeSamplePool(gv,
                      n_samples=20,
                      method='cut',
                      gi=gi,
                      return_tree_nodes=True  # using tree nodes
)

n_obs = 10
obs = np.random.permutation(g.num_vertices())[:n_obs]

print(obs)
pool.fill(obs)

q = 0
hidden_nodes = set(map(int, g.vertices())) - {q}- set(obs)
Esempio n. 14
0
def test_circle():
    size = 50
    periodic = True
    # periodic = False
    graph = gt_gen.lattice([size, size], periodic=periodic)
    if periodic:
        figure_title = 'grid_periodic'
    else:
        figure_title = 'grid_non-periodic'

    indices = np.arange(size * size)
    rows = np.mod(indices, size)
    cols = np.floor(indices / size)
    v_pos = graph.new_vertex_property('vector<double>',
                                      vals=np.vstack((rows, cols)).T)

    radius = 10
    center = (size + 1) * (size / 2)

    vertex_w = set([])
    for i in range(-radius, radius):
        for j in range(-radius, radius):
            if i ** 2 + j ** 2 < radius ** 2:
                idx = j * size + i + center
                vertex_w.add(idx)

    jump = 1e-5
    weight = graph.new_edge_property('double', vals=1)
    for idx in vertex_w:
        u = graph.vertex(idx)
        for e in u.out_edges():
            if e.target() not in vertex_w:
                weight[e] = jump

    v_color = graph.new_vertex_property('vector<double>')
    for u in graph.vertices():
        if graph.vertex_index[u] in vertex_w:
            v_color[u] = [1, 0, 0, 1]
        else:
            v_color[u] = [0, 0, 1, 1]

    vertex_w = list(vertex_w)

    x = np.linspace(-np.pi, np.pi, size)
    y = np.linspace(-np.pi, np.pi, size)
    xx, yy = np.meshgrid(x, y)
    z1 = np.sin(np.pi * xx).flatten()
    z2 = np.sin(2 * np.pi * yy).flatten()
    x_signal = z1
    x_signal[vertex_w] = z2[vertex_w]

    palette = sns.color_palette('RdBu', n_colors=256, desat=.7)
    cmap = colors.ListedColormap(palette, N=256)
    plt.figure()
    plt.imshow(np.reshape(x_signal, (size, size)), interpolation='nearest',
               cmap=cmap)
    plt.savefig(figure_title + '_signal.pdf', dpi=300)

    n_eigs = 500  # graph.num_vertices() - 1
    alpha = -1e-4

    factories = [spec.ConvolutionSGFT(graph, n_eigs, tau=200, weight=weight),
                 spec.PageRankSGFT(graph, n_eigs, alpha, weight=weight),
                 spec.ConvolutionSGFT(graph, n_eigs, tau=5, weight=None),
                 spec.PageRankSGFT(graph, n_eigs, alpha, weight=None)]

    sgft.comparison.compare_spectrograms(factories, x_signal,
                                         graph, v_pos,
                                         file_name=figure_title,
                                         show_ncomps=300)
    spec.show_window(factories[0], center, weight=weight, pos=v_pos,
                     vertex_size=20,
                     file_name=figure_title + '_w_window.png')
    spec.show_window(factories[1], center, weight=weight, pos=v_pos,
                     vertex_size=20,
                     file_name=figure_title + '_w_window_ppr.png')
    spec.show_window(factories[2], center, weight=None, pos=v_pos,
                     vertex_size=20,
                     file_name=figure_title + '_u_window.png')
    spec.show_window(factories[3], center, weight=None, pos=v_pos,
                     vertex_size=20,
                     file_name=figure_title + '_u_window_ppr.png')
Esempio n. 15
0
def test_circle():
    size = 100
    graph = gt_gen.lattice([size, size], periodic=False)


    indices = np.arange(size * size)
    rows = np.mod(indices, size)
    cols = np.floor(indices / size)
    v_pos = graph.new_vertex_property('vector<double>',
                                      vals=np.vstack((rows, cols)).T)

    center = size * (size / 2) + size / 2 - 20
    radius = 20

    vertex_w = set([])
    for i in range(-radius, radius):
        for j in range(-radius, radius):
            if i ** 2 + j ** 2 < radius ** 2:
                idx = j * size + i + center
                vertex_w.add(idx)
                idx = j * size + i + center + 35
                vertex_w.add(idx)
    print len(vertex_w)

    jump = 1e-5
    weight = graph.new_edge_property('double', vals=1)
    for idx in vertex_w:
        u = graph.vertex(idx)
        for e in u.out_edges():
            if e.target() not in vertex_w:
                weight[e] = jump
    # for e in graph.edges():
    #     weight[e] += min(abs(0.01 * np.random.randn()), 1)

    v_color = graph.new_vertex_property('vector<double>')
    for u in graph.vertices():
        if graph.vertex_index[u] in vertex_w:
            v_color[u] = [1, 0, 0, 1]
        else:
            v_color[u] = [0, 0, 1, 1]
    # gt_draw.graph_draw(graph, pos=v_pos, vertex_fill_color=v_color,
    #                    vertex_size=3)

    alpha = -1e-5
    n_eigs = 50

    factory_weighted = ppr.PersonalizedPageRank(graph, n_eigs, weight=weight)
    factory_unweighted = ppr.PersonalizedPageRank(graph, n_eigs, weight=None)

    spectrogram_weighted = np.zeros((graph.num_vertices(), n_eigs - 1))
    spectrogram_unweighted = np.zeros((graph.num_vertices(), n_eigs - 1))
    t = timeit.default_timer()
    for v in range(graph.num_vertices()):
        _, loadings_weighted = factory_weighted.vector([graph.vertex(v)], alpha)
        _, loadings_unweighted = factory_unweighted.vector([graph.vertex(v)],
                                                           alpha)
        spectrogram_weighted[v, :] = loadings_weighted
        spectrogram_unweighted[v, :] = loadings_unweighted
    print timeit.default_timer() - t
    spectrogram_weighted = np.abs(spectrogram_weighted)
    spectrogram_unweighted = np.abs(spectrogram_unweighted)
    spectrogram_weighted /= np.atleast_2d(np.sum(spectrogram_weighted, axis=1)).T
    spectrogram_unweighted /= np.atleast_2d(np.sum(spectrogram_unweighted, axis=1)).T

    plt.figure()
    plt.subplot(121)
    plt.imshow(spectrogram_weighted, interpolation='none')
    plt.title('Weighted')
    plt.axis('tight')
    plt.subplot(122)
    plt.imshow(spectrogram_unweighted, interpolation='none')
    plt.title('Unweighted')
    plt.axis('tight')