Esempio n. 1
0
#!/usr/bin/env python
# coding: utf-8

import torch
import dgl
import graphgallery

print("GraphGallery version: ", graphgallery.__version__)
print("Torch version: ", torch.__version__)
print("DGL version: ", dgl.__version__)
'''
Load Datasets
- cora/citeseer/pubmed
'''
from graphgallery.datasets import Planetoid
data = Planetoid('cora', root="~/GraphData/datasets/", verbose=False)
graph = data.graph
splits = data.split_nodes()

graphgallery.set_backend("dgl")

from graphgallery.gallery import GCN
model = GCN(graph, attr_transform="normalize_attr", device="gpu", seed=123)
model.build()
his = model.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100)
results = model.test(splits.test_nodes)
print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
Esempio n. 2
0
import graphgallery
import tensorflow as tf
from graphgallery import functional as gf

graphgallery.set_memory_growth()

print("GraphGallery version: ", graphgallery.__version__)
print("TensorFlow version: ", tf.__version__)
'''
Load Datasets
- cora/citeseer/pubmed/dblp/polblogs/cora_ml, etc...
'''
from graphgallery.datasets import Planetoid, NPZDataset
data = NPZDataset('cora',
                  root="~/GraphData/datasets/",
                  transform=gf.Standardize(),
                  verbose=False)
graph = data.graph
splits = data.split_nodes(random_state=15)

from graphgallery.gallery import GCN
model = GCN(graph, graph_transform="SVD", device="gpu", seed=123)
model.build()
history = model.train(splits.train_nodes,
                      splits.val_nodes,
                      verbose=1,
                      epochs=100)
results = model.test(splits.test_nodes)
print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
Esempio n. 3
0
#!/usr/bin/env python
# coding: utf-8

import torch
import graphgallery 

print("GraphGallery version: ", graphgallery.__version__)
print("Torch version: ", torch.__version__)

'''
Load Datasets
- cora/citeseer/pubmed
'''
from graphgallery.datasets import Planetoid
data = Planetoid('cora', root="~/GraphData/datasets/", verbose=False)
graph = data.graph
splits = data.split_nodes()

graphgallery.set_backend("pytorch")

from graphgallery.gallery import GCN
trainer = GCN(graph, device="gpu", seed=123).process(attr_transform="normalize_attr").build()
his = trainer.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100)
results = trainer.test(splits.test_nodes) 
print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
#!/usr/bin/env python
# coding: utf-8


import torch
import graphgallery 
from graphgallery import functional as gf

print("GraphGallery version: ", graphgallery.__version__)
print("Torch version: ", torch.__version__)

'''
Load Datasets
- cora/citeseer/pubmed/dblp/polblogs/cora_ml, etc...
'''
from graphgallery.datasets import Planetoid, NPZDataset
data = NPZDataset('cora', root="~/GraphData/datasets/", transform=gf.Standardize(), verbose=False)
graph = data.graph
splits = data.split_nodes(random_state=15)

graphgallery.set_backend("pytorch")

from graphgallery.gallery import GCN
trainer = GCN(graph, device="gpu", seed=123).process(graph_transform="SVD").build()
history = trainer.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100)
results = trainer.test(splits.test_nodes)
print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')