#!/usr/bin/env python # coding: utf-8 import torch import dgl import graphgallery print("GraphGallery version: ", graphgallery.__version__) print("Torch version: ", torch.__version__) print("DGL version: ", dgl.__version__) ''' Load Datasets - cora/citeseer/pubmed ''' from graphgallery.datasets import Planetoid data = Planetoid('cora', root="~/GraphData/datasets/", verbose=False) graph = data.graph splits = data.split_nodes() graphgallery.set_backend("dgl") from graphgallery.gallery import GCN model = GCN(graph, attr_transform="normalize_attr", device="gpu", seed=123) model.build() his = model.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100) results = model.test(splits.test_nodes) print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
import graphgallery import tensorflow as tf from graphgallery import functional as gf graphgallery.set_memory_growth() print("GraphGallery version: ", graphgallery.__version__) print("TensorFlow version: ", tf.__version__) ''' Load Datasets - cora/citeseer/pubmed/dblp/polblogs/cora_ml, etc... ''' from graphgallery.datasets import Planetoid, NPZDataset data = NPZDataset('cora', root="~/GraphData/datasets/", transform=gf.Standardize(), verbose=False) graph = data.graph splits = data.split_nodes(random_state=15) from graphgallery.gallery import GCN model = GCN(graph, graph_transform="SVD", device="gpu", seed=123) model.build() history = model.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100) results = model.test(splits.test_nodes) print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
#!/usr/bin/env python # coding: utf-8 import torch import graphgallery print("GraphGallery version: ", graphgallery.__version__) print("Torch version: ", torch.__version__) ''' Load Datasets - cora/citeseer/pubmed ''' from graphgallery.datasets import Planetoid data = Planetoid('cora', root="~/GraphData/datasets/", verbose=False) graph = data.graph splits = data.split_nodes() graphgallery.set_backend("pytorch") from graphgallery.gallery import GCN trainer = GCN(graph, device="gpu", seed=123).process(attr_transform="normalize_attr").build() his = trainer.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100) results = trainer.test(splits.test_nodes) print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
#!/usr/bin/env python # coding: utf-8 import torch import graphgallery from graphgallery import functional as gf print("GraphGallery version: ", graphgallery.__version__) print("Torch version: ", torch.__version__) ''' Load Datasets - cora/citeseer/pubmed/dblp/polblogs/cora_ml, etc... ''' from graphgallery.datasets import Planetoid, NPZDataset data = NPZDataset('cora', root="~/GraphData/datasets/", transform=gf.Standardize(), verbose=False) graph = data.graph splits = data.split_nodes(random_state=15) graphgallery.set_backend("pytorch") from graphgallery.gallery import GCN trainer = GCN(graph, device="gpu", seed=123).process(graph_transform="SVD").build() history = trainer.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100) results = trainer.test(splits.test_nodes) print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')