def test_CrossValidation_ReturnsError(self): model = ELM(5, 2) model.add_neurons(10, 'tanh') X = np.random.rand(100, 5) T = np.random.rand(100, 2) err = model.train(X, T, 'CV', k=3) self.assertIsNotNone(err)
class ELM(Classifier): def __init__(self, neurons: Tuple[Tuple] = None) -> None: clf = None self.neurons = neurons if neurons else DEFAULT_NEURONS super().__init__(clf) def fit(self, x_train: ndarray, y_train: ndarray, *args, **kwargs)\ -> None: self.classifier = ELMachine(x_train.shape[1], y_train.shape[1]) for neuron in self.neurons: logger.info("Adding {} neurons with '{}' function.".format( neuron[0], neuron[1])) self.classifier.add_neurons(neuron[0], neuron[1]) logger.debug("Training the Extreme Learning Machine Classifier...") start = time() self.classifier.train(x_train, y_train, **kwargs) logger.debug("Done training in {} seconds.".format(time() - start)) def predict(self, x_test: ndarray) -> ndarray: logger.debug("Predicting {} samples...".format(x_test.shape[0])) start = time() predictions = np.argmax(self.classifier.predict(x_test), axis=-1) logger.debug("Done all predictions in {} seconds.".format(time() - start)) return predictions def predict_proba(self, x_test: ndarray) -> float: logger.debug("Predicting {} samples...".format(x_test.shape[0])) start = time() predictions = self.classifier.predict(x_test) logger.debug("Done all predictions in {} seconds.".format(time() - start)) return predictions
def test_24_AddNeurons_InitDefault_BiasWNotZero(self): elm = ELM(2, 1) elm.add_neurons(3, "sigm") W = elm.neurons[0][2] bias = elm.neurons[0][3] self.assertGreater(np.sum(np.abs(W)), 0.001) self.assertGreater(np.sum(np.abs(bias)), 0.001)
class HPELMNN(Classifier): def __init__(self): self.__hpelm = None @staticmethod def name(): return "hpelmnn" def train(self, X, Y, class_number=-1): class_count = max(np.unique(Y).size, class_number) feature_count = X.shape[1] self.__hpelm = ELM(feature_count, class_count, 'wc') self.__hpelm.add_neurons(feature_count, "sigm") Y_arr = Y.reshape(-1, 1) enc = OneHotEncoder() enc.fit(Y_arr) Y_OHE = enc.transform(Y_arr).toarray() out_fd = sys.stdout sys.stdout = open(os.devnull, 'w') self.__hpelm.train(X, Y_OHE) sys.stdout = out_fd def predict(self, X): Y_predicted = self.__hpelm.predict(X) return Y_predicted
def test_ELM_SaveLoad(self): X = np.array([1, 2, 3, 1, 2, 3]) T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]]) elm = ELM(1, 2, precision='32', norm=0.02) elm.add_neurons(1, "lin") elm.add_neurons(2, "tanh") elm.train(X, T, "wc", w=(0.7, 0.3)) B1 = elm.nnet.get_B() try: f, fname = tempfile.mkstemp() elm.save(fname) elm2 = ELM(3, 3) elm2.load(fname) finally: os.close(f) self.assertEqual(elm2.nnet.inputs, 1) self.assertEqual(elm2.nnet.outputs, 2) self.assertEqual(elm2.classification, "wc") self.assertIs(elm.precision, np.float32) self.assertIs(elm2.precision, np.float64) # precision has changed np.testing.assert_allclose(np.array([0.7, 0.3]), elm2.wc) np.testing.assert_allclose(0.02, elm2.nnet.norm) np.testing.assert_allclose(B1, elm2.nnet.get_B()) self.assertEqual(elm2.nnet.get_neurons()[0][1], "lin") self.assertEqual(elm2.nnet.get_neurons()[1][1], "tanh")
def test_MultiLabelClassification_Works(self): elm = ELM(1, 2) X = np.array([1, 2, 3, 4, 5, 6]) T = np.array([[1, 1], [1, 0], [1, 0], [0, 1], [0, 1], [1, 1]]) elm.add_neurons(1, "lin") elm.train(X, T, 'ml') elm.train(X, T, 'mc')
def test_TrainWithBatch_OverwritesBatch(self): elm = ELM(1, 1, batch=123) X = np.array([1, 2, 3]) T = np.array([1, 2, 3]) elm.add_neurons(1, "lin") elm.train(X, T, batch=234) self.assertEqual(234, elm.batch)
def tune_elm(train_x, train_y, test_x_raw, test_x, act_funcs, neuron_counts): ''' Assumptions: 1. NN has only 1 hidden layer 2. act_funcs: list of distinct activation functions 3. neuron_counts: list of distinct '# of neurons in the hidden layer' ''' print("Tuning ELM...") features = train_x.shape[1] train_y = Pre_processor.one_hot_encoding(train_y) ind_func = 0 while (ind_func < len(act_funcs)): ind_neuron = 0 cur_act_func = act_funcs[ind_func] while (ind_neuron < len(neuron_counts)): cur_neuron_count = neuron_counts[ind_neuron] print(cur_act_func + " | " + str(cur_neuron_count) + "...") clf = ELM(features, Constants.tot_labels) clf.add_neurons(cur_neuron_count, cur_act_func) clf.train(train_x, train_y, 'CV', 'OP', 'c', k=10) pred_y = clf.predict(test_x) pred_y = Pre_processor.one_hot_decoding_full(pred_y) file_name = "submission_" + str( cur_neuron_count) + "_" + cur_act_func + ".csv" Database.save_results(test_x_raw, pred_y, file_name) ind_neuron = ind_neuron + 1 ind_func = ind_func + 1
def test_MultiLabelClassError_Works(self): X = np.array([1, 2, 3]) T = np.array([[0, 1], [1, 1], [1, 0]]) Y = np.array([[0.4, 0.6], [0.8, 0.6], [1, 1]]) elm = ELM(1, 2, classification="ml") elm.add_neurons(1, "lin") e = elm.error(T, Y) np.testing.assert_allclose(e, 1.0 / 6)
def test_AddNeurons_WorksWithLongType(self): if sys.version_info[0] == 2: ltype = long else: ltype = int model = ELM(3, 2) L = ltype(10) model.add_neurons(L, 'tanh')
def getElm(data, label, classification='c', w=None, nn=10, func="sigm"): elm = ELM(len(data[0]), len(label[0]), classification, w) elm.add_neurons(10, func) elm.add_neurons(10, "rbf_l1") elm.add_neurons(10, "rbf_l2") elm.train(data, np.array(label)) return elm
def test_20_SLFN_AddTwoNeuronTypes_GotThem(self): elm = ELM(1, 1) elm.add_neurons(1, "lin") elm.add_neurons(1, "sigm") self.assertEquals(2, len(elm.neurons)) ntypes = [nr[0] for nr in elm.neurons] self.assertIn("lin", ntypes) self.assertIn("sigm", ntypes)
def epoch(train_x, train_y, test_x, test_x_raw, filename): features = train_x.shape[1] train_y = Pre_processor.one_hot_encoding(train_y) clf = ELM(features, Constants.tot_labels) clf.add_neurons(550, "sigm") clf.train(train_x, train_y, 'CV', 'OP', 'c', k=10) pred_y = clf.predict(test_x) pred_y = Pre_processor.one_hot_decoding_full(pred_y) Database.save_results(test_x_raw, pred_y, filename)
def test_Classification_WorksCorreclty(self): elm = ELM(1, 2) X = np.array([-1, -0.6, -0.3, 0.3, 0.6, 1]) T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]]) elm.add_neurons(1, "lin") elm.train(X, T, 'c') Y = elm.predict(X) self.assertGreater(Y[0, 0], Y[0, 1]) self.assertLess(Y[5, 0], Y[5, 1])
def test_WeightedClassError_Works(self): T = np.array([[0, 1], [0, 1], [1, 0]]) Y = np.array([[0, 1], [0.4, 0.6], [0, 1]]) # here class 0 is totally incorrect, and class 1 is totally correct w = (9, 1) elm = ELM(1, 2, classification="wc", w=w) elm.add_neurons(1, "lin") e = elm.error(T, Y) np.testing.assert_allclose(e, 0.9)
def test_WeightedClassification_ClassWithLargerWeightWins(self): elm = ELM(1, 2) X = np.array([1, 2, 3, 1, 2, 3]) T = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1]]) elm.add_neurons(1, "lin") elm.train(X, T, 'wc', w=(1, 0.1)) Y = elm.predict(X) self.assertGreater(Y[0, 0], Y[0, 1]) self.assertGreater(Y[1, 0], Y[1, 1]) self.assertGreater(Y[2, 0], Y[2, 1])
def build_ELM_encoder(xinput, target, num_neurons): elm = ELM(xinput.shape[1], target.shape[1]) elm.add_neurons(num_neurons, "sigm") elm.add_neurons(num_neurons, "lin") #elm.add_neurons(num_neurons, "rbf_l1") elm.train(xinput, target, "r") ypred = elm.predict(xinput) print "mse error", elm.error(ypred, target) return elm, ypred
def test_25_AddNeurons_InitTwiceBiasW_CorrectlyMerged(self): elm = ELM(2, 1) W1 = np.random.rand(2, 3) W2 = np.random.rand(2, 4) bias1 = np.random.rand(3,) bias2 = np.random.rand(4,) elm.add_neurons(3, "sigm", W1, bias1) elm.add_neurons(4, "sigm", W2, bias2) np.testing.assert_array_almost_equal(np.hstack((W1, W2)), elm.neurons[0][2]) np.testing.assert_array_almost_equal(np.hstack((bias1, bias2)), elm.neurons[0][3])
def test_LOOandOP_CanSelectMoreThanOneNeuron(self): X = np.random.rand(100, 5) T = np.random.rand(100, 2) for _ in range(10): model = ELM(5, 2) model.add_neurons(5, 'lin') model.train(X, T, 'LOO', 'OP') max2 = model.nnet.L if max2 > 1: break self.assertGreater(max2, 1)
def getElm(data, label, classification='', w=None, nn=10, func="sigm"): print 'creat ELM, data,label shape=', data.shape, label.shape elm = ELM(data.shape[1], label.shape[1], classification=classification, w=w) elm.add_neurons(nn, func) elm.train(data, label, "c") return elm
def test_25_AddNeurons_InitTwiceBiasW_CorrectlyMerged(self): elm = ELM(2, 1) W1 = np.random.rand(2, 3) W2 = np.random.rand(2, 4) bias1 = np.random.rand(3, ) bias2 = np.random.rand(4, ) elm.add_neurons(3, "sigm", W1, bias1) elm.add_neurons(4, "sigm", W2, bias2) np.testing.assert_array_almost_equal(np.hstack((W1, W2)), elm.neurons[0][2]) np.testing.assert_array_almost_equal(np.hstack((bias1, bias2)), elm.neurons[0][3])
def model_elm(XX, TT, XX_test, TT_test, model_type): ''' Builda elm model using hpelm package Arguments: XX -- randomized and normalized training X-values, numpy array of shape (# compositions, # molar%) TT -- randomized and normalized training Y-values, numpy array of shape (Fragility value, 1) XX_test -- randomized and normalized testing X-values, numpy array of shape (# compositions, # molar%) TT_test -- randomized and normalized testing Y-values, numpy array of shape (Fragility value, 1) Returns: model -- save model in ELM format ''' # Hyperparameters k = 5 # Use this if model_type == CV np.random.seed(10) # Build hpelm model # ELM(inputs, outputs, classification='', w=None, batch=1000, accelerator=None, precision='double', norm=None, tprint=5) model = ELM(20, 1, tprint=5) # Add neurons model.add_neurons(7, 'tanh') # Number of neurons with tanh activation model.add_neurons(7, 'lin') # Number of neurons with linear activation # if then condition for types of training if (model_type == 'CV'): print('-' * 10 + 'Training with Cross-Validation' + '-' * 10) model.train(XX, TT, 'CV', k=k) # Train the model with cross-validation elif (model_type == 'LOO'): print('-' * 10 + 'Training with Leave-One-Out' + '-' * 10) model.train(XX, TT, 'LOO') # Train the model with Leave-One-Out else: print('-' * 10 + 'Training with regression' + '-' * 10) model.train(XX, TT, 'r') # Train the model with regression # Train ELM models TTH = model.predict(XX) # Calculate training error YY_test = model.predict(XX_test) # Calculate testing error print('Model Training Error: ', model.error(TT, TTH)) # Print training error print('Model Test Error: ', model.error(YY_test, TT_test)) # Print testing error print(str(model)) # Print model information print('-' * 50) # Call plot function my_plot(TT_test, YY_test) return model
def model_training(model_path, data_path, neurons=300): images, labels = read_mnist.load_mnist(data_path, kind='train') images = map(read_mnist.up_to_2D, images) images = map(get_hog, images) images = np.mat(np.array(images)) labels = np.mat(map(read_mnist.handle_label, labels)) elm = ELM(images.shape[1], labels.shape[1]) elm.add_neurons(neurons, 'sigm') elm.add_neurons(neurons, 'sigm') # elm.add_neurons(int(images.shape[1]*0.8), 'sigm') # elm.add_neurons(int(images.shape[1]*0.6), 'tanh') elm.train(images, labels) elm.save(model_path)
def run(X, Y): X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=42) #ELM model X_train=X_train.values X_test=X_test.values y_train=y_train.values y_test=y_test.values print 'ELM tanh' for x in range(50, 500, 50): elm = ELM(X_train.shape[1], 1, classification='c') elm.add_neurons(x, 'tanh') elm.train(X_train, y_train) pred = elm.predict(X_test) temp = [] # print 'Error(TANH, ', x, '): ', elm.error(y_test, pred) for p in pred: if p >=0.5: temp.append(1) else: temp.append(0) pred = np.asarray(temp) # print 'Error(TANH, ', x, '): ', elm.error(y_test, pred) evaluate(y_test, pred) print 'ELM rbf_linf tanh' for x in range(10, 100, 10): elm = ELM(X_train.shape[1], 1) elm.add_neurons(x, 'rbf_linf') elm.add_neurons(x*2, 'tanh') elm.train(X_train, y_train) pred = elm.predict(X_test) temp = [] # print 'Error(TANH, ', x, '): ', elm.error(y_test, pred) for p in pred: if p >=0.5: temp.append(1) else: temp.append(0) pred = np.asarray(temp) # print 'Error(RBF+TANH, ', x, ',', 2*x, '): ', elm.error(y_test, pred) evaluate(y_test, pred)
from hpelm import ELM import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X = np.loadtxt("tweet_vecs.txt", delimiter=',') Y = np.loadtxt("tweet_label.txt", delimiter=',') Y_onehot = np.loadtxt("tweet_label_onehot.txt", delimiter=',') X_train, X_test, Y_train, Y_test, Y_onehot_train, Y_onehot_test = train_test_split(X, Y, Y_onehot, test_size=0.20, shuffle=False) print("Starting training...") elm = ELM(X_train.shape[1], Y_onehot_train.shape[1]) elm.add_neurons(200, "sigm") elm.add_neurons(100, "tanh") elm.add_neurons(100, "sigm") elm.add_neurons(100, "sigm") elm.add_neurons(100, "tanh") elm.train(X_train, Y_onehot_train, "CV", "OP", "c", k=5) print("Finished training...") Y_predicted_elm = elm.predict(X_test) Y_predicted = np.zeros((Y_predicted_elm.shape[0])) for i, row in enumerate(Y_predicted_elm): idx_of_max = np.argmax(row) Y_predicted[i] = idx_of_max+1 with open("Y_predicted.txt", 'w+') as predfile, open("Y_true.txt", 'w+') as trufile: for i in Y_predicted: predfile.write(str(i)) predfile.write("\n")
result6 = open("data/result/lin.txt", "w") result6.write("accuracy" + "\t" + "precision" + "\t" + "recall" + "\t" + "f1-measure" + "\t" + " mse" + "\t" + " mae" + "\t" + "auc" + "\t" + "tpr" + "\t" + "fpr") result6.write("\n") result6a = open("data/result/linmse.txt", "w") result6a.write("accuracy" + "\t" + "precision" + "\t" + "recall" + "\t" + "f1-measure" + "\t" + " mse" + "\t" + " mae" + "\t" + "auc" + "\t" + "pr" + "\t" + "fpr") result6a.write("\n") print "sigmoid with multi class error" elm = ELM(41, 41) elm.add_neurons(40, "sigm") elm.train(X, Y, "c") r1 = elm.predict(X1) result.write(str(elm)) result.write("\n") r1 = r1.argmax(1) accuracy = accuracy_score(Y1, r1) recall = recall_score(Y1, r1, average="weighted") precision = precision_score(Y1, r1, average="weighted") f1 = f1_score(Y1, r1, average="weighted") mse = mean_squared_error(Y1, r1) mae = mean_absolute_error(Y1, r1) fpr, tpr, thresholds = metrics.roc_curve(Y1, r1, pos_label=9) auc = metrics.auc(fpr, tpr)
def test_22_AddNeurons_InitBias_BiasInModel(self): elm = ELM(1, 1) bias = np.array([1, 2, 3]) elm.add_neurons(3, "sigm", None, bias) np.testing.assert_array_almost_equal(bias, elm.neurons[0][3])
X_test_d2 = Csp2.transform(x_test_d2) print(X_train_d3.shape) print(X_train_d2.shape) print(X_test_d3.shape) print(X_test_d2.shape) X_train = ss.fit_transform(np.concatenate((X_train_d3, X_train_d2), axis=1)) X_test = ss.transform(np.concatenate((X_test_d3, X_test_d2), axis=1)) print(X_train.shape) print(X_test.shape) #use ELM as classifier from hpelm import ELM acc = [] elm = ELM(4, 1) elm.add_neurons(50, 'sigm') elm.train(X_train, y_train, "LOO") y_pred = elm.predict(X_test) print(len(y_pred)) for i in range(len(y_pred)): if y_pred[i] >= 0.5: y_pred[i] = 1 else: y_pred[i] = 0 print(y_test) acc.append(accuracy_score(y_test, y_pred)) avg_acc = np.mean(acc) print(avg_acc) # use LDA as classifier
def test_8_OneDimensionTargets_RunsCorrectly(self): X = np.array([[1, 2], [3, 4], [5, 6]]) T = np.array([[0], [0], [0]]) elm = ELM(2, 1) elm.add_neurons(1, "lin") elm.train(X, T)
#id_input = np.random.permutation(n_example) #id_input = [i for i in range(n_example) if y[i] ==1] #id_output = id_input[::-1] #xinput = XXtrain[id_input,] #xoutput = XXtrain[id_input,] #print xinput.shape ## INPUT LAYER singleLayer = True if singleLayer: t = 5 mn_error = np.zeros([t, 1]) for i in range(0, t): elmSingle = ELM(input_shape, YY.shape[1]) #elmSingle.add_neurons(ninputsig/2, "sigm") elmSingle.add_neurons(ninputsig, "sigm") #elmSingle.add_neurons(100, "rbf_l1") #elmSingle.add_neurons(ninputsig/10, "lin") elmSingle.train(XXtrainIn, YYtrain, "c", norm=1e-5) print "\n Trained input elm", elmSingle youtput = elmSingle.predict(XXtest) p = ytest.squeeze() yout = np.argmax(youtput, axis=1) nhit = sum(yout == p) ntpos = sum((yout == 1) & (p == 1)) ntneg = sum((yout == 0) & (p == 0)) npos = sum((p == 1)) nneg = sum((p == 0)) print "\n Testing results" print "Tpos:", ntpos, " / ", npos, "TD:", ntpos / float(npos)
def test_6_WrongDimensionalityTargets_RaiseError(self): X = np.array([[1, 2], [3, 4], [5, 6]]) T = np.array([[1], [2], [3]]) elm = ELM(1, 2) elm.add_neurons(1, "lin") self.assertRaises(AssertionError, elm.train, X, T)
def test_4_OneDimensionTargets_RunsCorrectly(self): X = np.array([1, 2, 3]) T = np.array([1, 2, 3]) elm = ELM(1, 1) elm.add_neurons(1, "lin") elm.train(X, T)
def test_14_SLFN_AddSigmoidalNeurons_GotThem(self): elm = ELM(1, 1) elm.add_neurons(1, "sigm") self.assertEquals("sigm", elm.neurons[0][0])
test.append(items[_id] + users[i]) temp = [0] * 5 temp[rating_mat['test_1'].T[mat_iid][i - 1] - 1] = 1 test_rat.append(temp) #print mat_iid mat_iid += 1 X = np.asarray(X, dtype=np.uint8) T = np.asarray(T, dtype=np.uint8) test = np.asarray(test, dtype=np.uint8) test_rat = np.asarray(test_rat, dtype=np.uint8) ##print X.shape,test.shape elm = ELM(X.shape[1], T.shape[1]) elm.add_neurons(neuron, node) elm.train(X, T, "LOO") Y = elm.predict(test) pred = np.argmax(Y, axis=1) true = np.argmax(test_rat, axis=1) print 'Split 1 RMSE: ', mse(true, pred)**0.5 print 'Split 1 NMAE: ', mae(true, pred) / 4 i1_rmse = mse(true, pred)**0.5 i1_nmae = mae(true, pred) / 4 #################################SPLIT 2##################################### train_ids = map(int, train_ids_read.readline().strip().split(',')) test_ids = map(int, test_ids_read.readline().strip().split(','))
def test_13_SLFN_AddLinearNeurons_GotThem(self): elm = ELM(1, 1) elm.add_neurons(1, "lin") self.assertEquals("lin", elm.neurons[0][0])
def test_12_LinearNeurons_DefaultMatrix_Identity(self): elm = ELM(4, 1) elm.add_neurons(3, "lin") np.testing.assert_array_almost_equal(np.eye(4, 3), elm.neurons[0][2])
def test_11_LinearNeurons_MoreThanInputs_Truncated(self): elm = ELM(2, 1) elm.add_neurons(3, "lin") self.assertEqual(2, elm.neurons[0][1])
result5 = open("data/result1/tanh.txt", "w") result5.write("accuracy" + "\t" + "precision" + "\t" + "recall" + "\t" + "f1-measure" +"\t" + " mse" + "\t" + " mae" + "\t" + "auc") result5.write("\n") result6 = open("data/result1/lin.txt", "w") result6.write("accuracy" + "\t" + "precision" + "\t" + "recall" + "\t" + "f1-measure" +"\t" + " mse" + "\t" + " mae" + "\t" + "auc") result6.write("\n") print "sigmoid with multi class error" elm = ELM(42,2) elm.add_neurons(34, "sigm") elm.train(X, Y, "c") r1 = elm.predict(X) print(str(elm)) print("performance measures") result.write(str(elm)) result.write("\n") r1=r1.argmax(1) accuracy = accuracy_score(Y1, r1) print(accuracy) recall = recall_score(Y1, r1, average="binary") precision = precision_score(Y1, r1 , average="binary") f1 = f1_score(Y1, r1 , average="binary") mse = mean_squared_error(Y1, r1) mae = mean_absolute_error(Y1, r1)
def test_23_AddNeurons_InitW_WInModel(self): elm = ELM(2, 1) W = np.array([[1, 2, 3], [4, 5, 6]]) elm.add_neurons(3, "sigm", W, None) np.testing.assert_array_almost_equal(W, elm.neurons[0][2])
result5 = open("data/result/tanh.txt", "w") result5.write("accuracy" + "\t" + "precision" + "\t" + "recall" + "\t" + "f1-measure" +"\t" + " mse" + "\t" + " mae" + "\t" + "auc") result5.write("\n") result6 = open("data/result/lin.txt", "w") result6.write("accuracy" + "\t" + "precision" + "\t" + "recall" + "\t" + "f1-measure" +"\t" + " mse" + "\t" + " mae" + "\t" + "auc") result6.write("\n") print "sigmoid with multi class error" elm = ELM(41,23) elm.add_neurons(15, "sigm") elm.train(X, Y, "c") r1 = elm.predict(X1) print(str(elm)) print("performance measures") result.write(str(elm)) result.write("\n") r1=r1.argmax(1) accuracy = accuracy_score(Y1, r1) print(accuracy) recall = recall_score(Y1, r1, average="weighted") precision = precision_score(Y1, r1 , average="weighted") f1 = f1_score(Y1, r1 , average="weighted") mse = mean_squared_error(Y1, r1) mae = mean_absolute_error(Y1, r1)
def test_7_ZeroInputs_RunsCorrectly(self): X = np.array([[0, 0], [0, 0], [0, 0]]) T = np.array([1, 2, 3]) elm = ELM(2, 1) elm.add_neurons(1, "lin") elm.train(X, T)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on Sun Oct 19 16:29:09 2014 @author: akusok """ import numpy as np import os from hpelm import ELM curdir = os.path.dirname(__file__) pX = os.path.join(curdir, "../datasets/Unittest-Iris/iris_data.txt") pY = os.path.join(curdir, "../datasets/Unittest-Iris/iris_classes.txt") X = np.loadtxt(pX) Y = np.loadtxt(pY) elm = ELM(4, 3) elm.add_neurons(15, "sigm") elm.train(X, Y, "c") Yh = elm.predict(X) acc = float(np.sum(Y.argmax(1) == Yh.argmax(1))) / Y.shape[0] print "Iris dataset training error: %.1f%%" % (100 - acc * 100)
def test_3_OneDimensionInputs_RunsCorrectly(self): X = np.array([1, 2, 3]) T = np.array([[1], [2], [3]]) elm = ELM(1, 1) elm.add_neurons(1, "lin") elm.train(X, T)
#!/usr/bin/env python import numpy as np import time import random import sys from hpelm import ELM inp = np.loadtxt("input.txt") outp = np.loadtxt("output.txt") for neuron in range(10, 1000, 10): elm = ELM(92, 40) elm.add_neurons(neuron, "sigm") t0 = time.clock() elm.train(inp, outp, "c") t1 = time.clock() t = t1-t0 pred = elm.predict(inp) acc = float(np.sum(outp.argmax(1) == pred.argmax(1))) / outp.shape[0] print "neuron=%d error=%.1f%% time=%dns" % (neuron, 100-acc*100, t*1000000) if int(acc) == 1: break
def calc_W_B_para(C=0.7,input_node_num=input_node_num,hide_node_num=hide_node_num,): beta=C*math.pow(hide_node_num,(1/float(input_node_num))) W_old=np.random.uniform(-0.5,0.5,size=(input_node_num,hide_node_num)) if input_node_num == 1: W_old = W_old / np.abs(W_old) else: W_old = np.sqrt(1. / np.square(W_old).sum(axis=1).reshape(input_node_num, 1)) * W_old W_new=beta*W_old Bias=np.random.uniform(-beta,beta,size=(hide_node_num,)) return [W_new,Bias] W,B=calc_W_B_para() elm = ELM(input_node_num,output_node_num,ak=ak,bk=bk) elm.add_neurons(20, "avg_arcsinh_morlet",W=W,B=B) elm.train(X_learn, Y_learn, "r") def plot_prognostic(train_out): inputs_regressors_num=list(X_learn[len(X_learn)-1,:]) len_just_prog=len_prognostics-1100 FC1_prognostics=[] for i in range(len_just_prog): if i <regressors_num: if i ==0: inputs=list(inputs_regressors_num) inputs=np.array(inputs) inputs.resize(1,4) FC1_prognostics.append(elm.predict(inputs))
def test_2_NonNumpyTargets_RaiseError(self): X = np.array([[1, 2], [3, 4], [5, 6]]) T = np.array([['a'], ['b'], ['c']]) elm = ELM(2, 1) elm.add_neurons(1, "lin") self.assertRaises(AssertionError, elm.train, X, T)
def test_1_NonNumpyInputs_RaiseError(self): X = np.array([['1', '2'], ['3', '4'], ['5', '6']]) T = np.array([[1], [2], [3]]) elm = ELM(2, 1) elm.add_neurons(1, "lin") self.assertRaises(AssertionError, elm.train, X, T)