def test_ProjectELM_WorksCorrectly(self): X = np.array([[1], [2], [3]]) elm = ELM(1, 1) elm.add_neurons(1, "tanh", np.array([[1]]), np.array([0])) H = elm.project(X) np.testing.assert_allclose(H, np.tanh(X))
npos = sum((p == 1)) nneg = sum((p == 0)) print "\n Testing results" print "Tpos:", ntpos, " / ", npos, "TD:", ntpos / float(npos) print "Tneg:", ntneg, " / ", nneg, "TN:", ntneg / float(nneg) print "Acc: ", nhit / (float)(len(p)), "total", len(p) mn_error[i] = nhit / (float)(len(p)) print mn_error print "mean error", np.mean(mn_error) else: elmInput = ELM(input_shape, input_shape) elmInput.add_neurons(ninputsig, "tanh") #elmInput.add_neurons(500, "lin") elmInput.train(XXtrainIn, XXtrainOut, "r") elmInputProjection = elmInput.project(XXtrainIn) print "\n Trained input elm ", elmInput print "Projection Max :", np.max(elmInputProjection), "Min :", np.min( elmInputProjection) # do norm before continuing. elmInputProjectionNormed = mapMinMax(elmInputProjection) print "Normed Projection Max :", np.max( elmInputProjectionNormed), "Min :", np.min(elmInputProjectionNormed) ## HIDDEN LAYER elmHidden1 = ELM(elmInputProjectionNormed.shape[1], elmInputProjectionNormed.shape[1]) elmHidden1.add_neurons(ninputsig, "tanh") elmHidden1.add_neurons(ninputlin, "lin") elmHidden1.train(elmInputProjectionNormed, elmInputProjectionNormed, "r")