Esempio n. 1
0
    def inform(self, df):
        # print("Calculating Strategy for " + str(self.tickerName) + " at " + str(timeStamp) + "...")
        ### TO-DO: Develop strategies to calculate

        ##
        ## Inform Analyser to do the interval Analysis first
        ## This is before the pseudotrades to ensure no clashes
        self.analyser.intervalAnalysis(df.head(1))

        #1. Calculate ATR for potential trade
        atr = atrcalc.ATRcalc(df)
        indi = ind.Indicator()

        Results = indi.beginCalc(df, self.tickerName, atr)

        for i in Results:
            if Results[i] != 0:
                self.analyser.PseudoTrade(df, i, Results[i], atr)

            ### for testing
            # self.analyser.PseudoTrade(df,i, Results[i], atr)
            ###
        ### END TO-DO
        # print("Calculated Strategy for " + str(self.tickerName) + " at " + str(timeStamp))
        self.comparator.compare(Results, atr)
Esempio n. 2
0
    def macdTRIX(self, df, pattern, patterntype):
        df = df.dropna()
        #1. Calculate ATR for potential trade
        atr = atrcalc.ATRcalc(df)

        ##b. MACD
        macdInput = df.head(34)
        macdInput = macdInput.iloc[::-1]
        MACDclose = macdInput['close'].values
        macd, macdsignal, macdhist = MACDFIX(MACDclose, signalperiod=9)
        # print("MACD\n", macd[-1])
        # print("Signal\n", macdsignal[-1])

        ##c. DelayedMACD
        delayedmacdInput = df.iloc[1:].head(34)
        delayedmacdInput = delayedmacdInput.iloc[::-1]
        delayedMACDclose = delayedmacdInput['close'].values
        delayedmacd, delayedmacdsignal, delayedmacdhist = MACDFIX(
            delayedMACDclose, signalperiod=9)

        trixInput = df.head(60)
        trixInput = df.iloc[::-1]
        trixOutput = TRIX(trixInput['close'].values, timeperiod=20)

        # print("EMA\n", ema[-1])

        ##d. current price action
        priceaction = df.head(1)
        pricehigh = priceaction['high'].values[0]
        pricelow = priceaction['low'].values[0]
        priceclose = priceaction['close'].values[0]
        # print("pricehigh\n", pricehigh)
        # print("pricelow\n", pricelow)

        if delayedmacd[-1] < delayedmacdsignal[-1] and macd[-1] > macdsignal[
                -1] and trixOutput[-1] < 0:
            position = 1
        elif delayedmacd[-1] > delayedmacdsignal[-1] and macd[-1] < macdsignal[
                -1] and trixOutput[-1] > 0:
            position = -1
        else:
            position = 0
        amount = 50
        if position == 1:
            stoploss = priceclose - 1.05 * atr
            takeprofit = priceclose + 1.45 * atr
            # amount = priceclose / (priceclose - stoploss)
            if (priceclose - stoploss) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0
        elif position == -1:
            stoploss = priceclose + 1.05 * atr
            takeprofit = priceclose - 1.45 * atr
            # amount = priceclose / (stoploss - priceclose)
            if (stoploss - priceclose) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0
        else:
            stoploss = 0
            takeprofit = 0
            amount = 0

        ##For test
        # position = 1
        if position * pattern > 0:
            confidence = abs(pattern)
        elif position * pattern < 0:
            confidence = abs(1 / pattern)
        elif position == 0:
            confidence = 0
        else:
            confidence = 1

        # ##FOR TEST
        # position = 1
        return [position, amount, priceclose, stoploss, takeprofit, confidence]
Esempio n. 3
0
    def trix200(self, df, pattern, patterntype):
        df = df.dropna()

        #1. Calculate ATR for potential trade
        atr = atrcalc.ATRcalc(df)

        trixInput = df.head(60)
        trixInput = trixInput.iloc[::-1]
        trixOutput = TRIX(trixInput['close'].values, timeperiod=14)

        ##c. 200EMA
        emaInput = df.head(200)
        emaInput = emaInput.iloc[::-1]
        EMAclose = emaInput['close'].values
        ema = EMA(EMAclose, timeperiod=200)

        # print("EMA\n", ema[-1])

        ##d. current price action
        priceaction = df.head(1)
        pricehigh = priceaction['high'].values[0]
        pricelow = priceaction['low'].values[0]
        priceclose = priceaction['close'].values[0]
        # print("pricehigh\n", pricehigh)
        # print("pricelow\n", pricelow)

        if trixOutput[-2] < 0 and trixOutput[-1] > 0:
            crossover = 1
        elif trixOutput[-2] > 0 and trixOutput[-1] < 0:
            crossover = -1
        else:
            crossover = 0

        if pricelow > ema[-1]: marketEMA = 1
        elif pricehigh < ema[-1]: marketEMA = -1
        else: marketEMA = 0

        ##OUTPUT
        if marketEMA == 1 and crossover > 0: position = 1
        elif marketEMA == -1 and crossover < 0: position = -1
        else: position = 0
        amount = 50
        if position == 1:
            stoploss = priceclose - 1.05 * atr
            takeprofit = priceclose + 1.45 * atr
            # amount = priceclose / (priceclose - stoploss)
            if (priceclose - stoploss) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0
        elif position == -1:
            stoploss = priceclose + 1.05 * atr
            takeprofit = priceclose - 1.45 * atr
            # amount = priceclose / (stoploss - priceclose)
            if (stoploss - priceclose) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0
        else:
            stoploss = 0
            takeprofit = 0
            amount = 0

        if position * pattern > 0:
            confidence = abs(pattern)
        elif position * pattern < 0:
            confidence = abs(1 / pattern)
        elif position == 0:
            confidence = 0
        else:
            confidence = 1

        # ##FOR TEST
        # position = 1
        return [position, amount, priceclose, stoploss, takeprofit, confidence]
Esempio n. 4
0
    def macd200(self, df, pattern, patterntype):
        #1. Calculate ATR for potential trade
        atr = atrcalc.ATRcalc(df)
        #####PLACEHOLDER
        # df = pd.read_csv('./database/AAPL.csv')
        #####END_PLACEHOLDER
        df = df.dropna()

        ###1. Getting Parameters

        ##b. MACD
        macdInput = df.head(34)
        macdInput = macdInput.iloc[::-1]
        MACDclose = macdInput['close'].values
        macd, macdsignal, macdhist = MACDFIX(MACDclose, signalperiod=9)
        # print("MACD\n", macd[-1])
        # print("Signal\n", macdsignal[-1])

        ##c. DelayedMACD
        delayedmacdInput = df.iloc[1:].head(34)
        delayedmacdInput = delayedmacdInput.iloc[::-1]
        delayedMACDclose = delayedmacdInput['close'].values
        delayedmacd, delayedmacdsignal, delayedmacdhist = MACDFIX(
            delayedMACDclose, signalperiod=9)

        ##c. 200EMA
        emaInput = df.head(200)
        emaInput = emaInput.iloc[::-1]
        EMAclose = emaInput['close'].values
        ema = EMA(EMAclose, timeperiod=200)

        # print("EMA\n", ema[-1])

        ##d. current price action
        priceaction = df.head(1)
        pricehigh = priceaction['high'].values[0]
        pricelow = priceaction['low'].values[0]
        priceclose = priceaction['close'].values[0]
        # print("pricehigh\n", pricehigh)
        # print("pricelow\n", pricelow)

        ###2. Analysing using the data provided

        ##macd-signal crossover type
        ## -1 means negative crossover
        ## 1 means positive crossover
        ## 0 means both
        if delayedmacd[-1] < delayedmacdsignal[-1] and macd[-1] > macdsignal[
                -1]:
            crossover = 1
        elif delayedmacd[-1] > delayedmacdsignal[-1] and macd[-1] < macdsignal[
                -1]:
            crossover = -1
        else:
            crossover = 0
        ##market-ema type
        ## 1 means low > 200EMA
        ## -1 means high < 200EMA
        ## 0 means otherwise

        if pricelow > ema[-1]: marketEMA = 1
        elif pricehigh < ema[-1]: marketEMA = -1
        else: marketEMA = 0

        ##OUTPUT
        if marketEMA == 1 and crossover > 0 and macd[-1] < 0: position = 1
        elif marketEMA == -1 and crossover < 0 and macd[-1] > 0: position = -1
        else: position = 0
        amount = 50
        if position == 1:
            stoploss = priceclose - 1.05 * atr
            takeprofit = priceclose + 1.45 * atr
            # amount = priceclose / (priceclose - stoploss)
            if (priceclose - stoploss) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0
        elif position == -1:
            stoploss = priceclose + 1.05 * atr
            takeprofit = priceclose - 1.45 * atr
            # amount = priceclose / (stoploss - priceclose)
            if (stoploss - priceclose) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0
        else:
            stoploss = 0
            takeprofit = 0
            amount = 0

        ##For test
        # position = 1

        if position * pattern > 0:
            confidence = abs(pattern)
        elif position * pattern < 0:
            confidence = abs(1 / pattern)
        elif position == 0:
            confidence = 0
        else:
            confidence = 1

        # ##FOR TEST
        # position = 1
        return [position, amount, priceclose, stoploss, takeprofit, confidence]
Esempio n. 5
0
    def SMA200(self, df, pattern, patterntype):
        df = df.dropna()

        ###1. Getting Parameters
        ##a. current price action
        priceaction = df.head(1)
        pricehigh = priceaction['high'].values[0]
        pricelow = priceaction['low'].values[0]
        priceclose = priceaction['close'].values[0]

        ##b. previous price action
        prevaction = df.iloc[1:].head(1)
        prevhigh = prevaction['high'].values[0]
        prevlow = prevaction['low'].values[0]
        prevclose = prevaction['close'].values[0]

        ##d. current SMAs
        smaCurrentInput = df.head(20)
        sma20Current = SMA(smaCurrentInput['close'].values, timeperiod=20)
        smaCurrentInput = smaCurrentInput.head(10)
        sma10Current = SMA(smaCurrentInput['close'].values, timeperiod=10)

        ##e. previous SMAs
        smaPreviousInput = df.iloc[1:].head(20)
        sma20Previous = SMA(smaPreviousInput['close'].values, timeperiod=20)
        smaPreviousInput = smaPreviousInput.head(10)
        sma10Previous = SMA(smaPreviousInput['close'].values, timeperiod=10)

        ##f. 200EMA
        emaInput = df.head(200)
        emaInput = emaInput.iloc[::-1]
        EMAclose = emaInput['close'].values
        ema = EMA(EMAclose, timeperiod=200)

        ##trade conditions

        if sma10Previous[-1] < sma20Previous[-1] and sma10Current[
                -1] > sma20Current[-1]:
            crossover = 1
        elif sma10Previous[-1] > sma20Previous[-1] and sma10Current[
                -1] < sma20Current[-1]:
            crossover = -1
        else:
            crossover = 0

        ## 200EMA filtering false signal
        if pricelow > ema[-1]: marketEMA = 1
        elif pricehigh < ema[-1]: marketEMA = -1
        else: marketEMA = 0

        if crossover == 1 and marketEMA == 1:
            position = 1
        elif crossover == -1 and marketEMA == -1:
            position = -1
        else:
            position = 0

        atr = atrcalc.ATRcalc(df)
        amount = 50
        if position == 1:
            stoploss = priceclose - 1.05 * atr
            takeprofit = priceclose + 1.45 * atr
            # amount = priceclose / (priceclose - stoploss)
            if (priceclose - stoploss) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0
        elif position == -1:
            stoploss = priceclose + 1.05 * atr
            takeprofit = priceclose - 1.45 * atr
            # amount = priceclose / (stoploss - priceclose)
            if (stoploss - priceclose) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0
        else:
            stoploss = 0
            takeprofit = 0
            amount = 0

        if position * pattern > 0:
            confidence = abs(pattern)
        elif position * pattern < 0:
            confidence = abs(1 / pattern)
        elif position == 0:
            confidence = 0
        else:
            confidence = 1
        # ##FOR TEST
        # position = 1
        return [position, amount, priceclose, stoploss, takeprofit, confidence]
Esempio n. 6
0
    def bbands200(self, df, pattern, patterntype):
        df = df.dropna()

        #1. Calculate ATR for potential trade
        atr = atrcalc.ATRcalc(df)

        ##b. get BBands
        bband = df.head(21)
        bband = bband.iloc[1:]
        bband = bband.iloc[::-1]
        bbandInput = bband['close'].values
        upperband, middleband, lowerband = BBANDS(bbandInput,
                                                  timeperiod=20,
                                                  nbdevup=2,
                                                  nbdevdn=2,
                                                  matype=0)

        ##c. 200EMA
        emaInput = df.head(200)
        emaInput = emaInput.iloc[::-1]
        EMAclose = emaInput['close'].values
        ema = EMA(EMAclose, timeperiod=200)

        ##d. current price action
        priceaction = df.head(1)
        pricehigh = priceaction['high'].values[0]
        pricelow = priceaction['low'].values[0]
        priceclose = priceaction['close'].values[0]

        if pricehigh > upperband[-1]: breakBand = -1
        elif pricelow < lowerband[-1]: breakBand = 1
        else: breakBand = 0

        if pricelow > ema[-1]: marketEMA = 1
        elif pricehigh < ema[-1]: marketEMA = -1
        else: marketEMA = 0

        ##OUTPUT
        if marketEMA == 1 and pattern > 0 and patterntype == -1 and breakBand == 1:
            position = 1
        elif marketEMA == -1 and pattern < 0 and patterntype == -1 and breakBand == -1:
            position = -1
        else:
            position = 0
        amount = 50
        if position == 1:
            stoploss = priceclose - 1.05 * atr
            takeprofit = priceclose + 1.45 * atr
            # amount = priceclose / (priceclose - stoploss)
            if (stoploss - priceclose) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0

        elif position == -1:
            stoploss = priceclose + 1.05 * atr
            takeprofit = priceclose - 1.45 * atr
            # amount = priceclose / (stoploss - priceclose)
            if (stoploss - priceclose) * amount < 0.1:
                position = 0
                amount = 0
                stoploss = 0
                takeprofit = 0

        else:
            stoploss = 0
            takeprofit = 0
            amount = 0

        if position * pattern > 0:
            confidence = abs(pattern)
        elif position * pattern < 0:
            confidence = abs(1 / pattern)
        elif position == 0:
            confidence = 0
        else:
            confidence = 1

        # ##FOR TEST
        # position = 1
        return [position, amount, priceclose, stoploss, takeprofit, confidence]
Esempio n. 7
0
import pandas as pd
from talib import MACDFIX, RSI, EMA, SAR, SMA, TRIX, BBANDS, CDLIDENTICAL3CROWS, CDL3BLACKCROWS, CDL3WHITESOLDIERS, CDLMORNINGSTAR, CDLEVENINGSTAR, CDL3LINESTRIKE, CDLMORNINGDOJISTAR, CDLEVENINGDOJISTAR, CDL3OUTSIDE, CDLENGULFING, CDLBELTHOLD, CDLABANDONEDBABY, CDL3INSIDE, CDLPIERCING, CDLDARKCLOUDCOVER, CDLBREAKAWAY, CDLXSIDEGAP3METHODS, CDLHAMMER, CDLSHOOTINGSTAR
import indicators.ATRcalc as atrcalc
import os
#1. Calculate ATR for potential trade
#####PLACEHOLDER
df = pd.read_csv('./database/AAPL/temp2.csv')
#####END_PLACEHOLDER
#1. Calculate ATR for potential trade
#####PLACEHOLDER
# df = pd.read_csv('./database/AAPL.csv')
#####END_PLACEHOLDER
df = df.dropna()

#1. Calculate ATR for potential trade
atr = atrcalc.ATRcalc(df)

## a. checkpatterns
cdlInput = df.head(20)
cdlInput = cdlInput.iloc[::-1]
aa = cdlInput['open'].values
ab = cdlInput['high'].values
ac = cdlInput['low'].values
ad = cdlInput['close'].values
outputI3C = CDLIDENTICAL3CROWS(aa, ab, ac, ad)
output3BC = CDL3BLACKCROWS(aa, ab, ac, ad)
output3WS = CDL3WHITESOLDIERS(aa, ab, ac, ad)
outputMS = CDLMORNINGSTAR(aa, ab, ac, ad)
outputES = CDLEVENINGSTAR(aa, ab, ac, ad)
output3LS = CDL3LINESTRIKE(aa, ab, ac, ad)
outputMDS = CDLMORNINGDOJISTAR(aa, ab, ac, ad)