Esempio n. 1
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic.
    """
    p = OptionParser(histogram.__doc__)
    p.add_option(
        "--vmin",
        dest="vmin",
        default=1,
        type="int",
        help="minimum value, inclusive",
    )
    p.add_option(
        "--vmax",
        dest="vmax",
        default=100,
        type="int",
        help="maximum value, inclusive",
    )
    p.add_option(
        "--pdf",
        default=False,
        action="store_true",
        help="Print PDF instead of ASCII plot",
    )
    p.add_option(
        "--method",
        choices=("nbinom", "allpaths"),
        default="nbinom",
        help=
        "'nbinom' - slow but more accurate for het or polyploid genome; 'allpaths' - fast and works for homozygous enomes",
    )
    p.add_option(
        "--maxiter",
        default=100,
        type="int",
        help="Max iterations for optimization. Only used with --method nbinom",
    )
    p.add_option("--coverage",
                 default=0,
                 type="int",
                 help="Kmer coverage [default: auto]")
    p.add_option(
        "--nopeaks",
        default=False,
        action="store_true",
        help="Do not annotate K-mer peaks",
    )
    opts, args, iopts = p.set_image_options(args, figsize="7x7")

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    method = opts.method
    vmin, vmax = opts.vmin, opts.vmax
    ascii = not opts.pdf
    peaks = not opts.nopeaks and method == "allpaths"
    N = int(N)

    if histfile.rsplit(".", 1)[-1] in ("mcdat", "mcidx"):
        logging.debug("CA kmer index found")
        histfile = merylhistogram(histfile)

    ks = KmerSpectrum(histfile)
    method_info = ks.analyze(K=N, maxiter=opts.maxiter, method=method)

    Total_Kmers = int(ks.totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.lambda_ if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1.0 / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers))
    Kmer_coverage_msg = "{0}-mer coverage: {1:.1f}x".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f} Mb".format(Genome_size /
                                                                 1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print(msg, file=sys.stderr)

    x, y = ks.get_xy(vmin, vmax)
    title = "{0} {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (iopts.w, iopts.h))
    plt.bar(x, y, fc="#b2df8a", lw=0)
    # Plot the negative binomial fit
    if method == "nbinom":
        generative_model = method_info["generative_model"]
        GG = method_info["Gbins"]
        ll = method_info["lambda"]
        rr = method_info["rho"]
        kf_range = method_info["kf_range"]
        stacked = generative_model(GG, ll, rr)
        plt.plot(
            kf_range,
            stacked,
            ":",
            color="#6a3d9a",
            lw=2,
        )

    ax = plt.gca()

    if peaks:  # Only works for method 'allpaths'
        t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
        tcounts = [(x, y) for x, y in ks.counts if x in t]
        if tcounts:
            x, y = zip(*tcounts)
            tcounts = dict(tcounts)
            plt.plot(x, y, "ko", lw=3, mec="k", mfc="w")
            ax.text(ks.max1, tcounts[ks.max1], "SNP peak")
            ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6
    if method == "nbinom":
        # Plot multiple CN locations, CN1, CN2, ... up to ploidy
        cn_color = "#a6cee3"
        for i in range(1, ks.ploidy + 1):
            x = i * ks.lambda_
            plt.plot((x, x), (0, ymax), "-.", color=cn_color)
            plt.text(
                x,
                ymax * 0.95,
                "CN{}".format(i),
                ha="right",
                va="center",
                color=cn_color,
                rotation=90,
            )

    messages = [
        Total_Kmers_msg,
        Kmer_coverage_msg,
        Genome_size_msg,
        Repetitive_msg,
        SNPrate_msg,
    ]
    if method == "nbinom":
        messages += [ks.ploidy_message] + ks.copy_messages
    write_messages(ax, messages)

    ax.set_title(markup(title))
    ax.set_xlim((0, vmax))
    ax.set_ylim((0, ymax))
    adjust_spines(ax, ["left", "bottom"], outward=True)
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + "." + iopts.format
    savefig(imagename, dpi=100)

    return Genome_size
Esempio n. 2
0
def histogram(args):
    """
    %prog histogram [reads.fasta|reads.fastq]

    Plot read length distribution for reads. The plot would be similar to the
    one generated by SMRT-portal, for example:

    http://blog.pacificbiosciences.com/2013/10/data-release-long-read-shotgun.html

    Plot has two axes - corresponding to pdf and cdf, respectively.  Also adding
    number of reads, average/median, N50, and total length.
    """
    from jcvi.utils.cbook import human_size, thousands, SUFFIXES
    from jcvi.formats.fastq import fasta
    from jcvi.graphics.histogram import stem_leaf_plot
    from jcvi.graphics.base import (
        plt,
        markup,
        human_formatter,
        human_base_formatter,
        savefig,
        set2,
        set_ticklabels_helvetica,
    )

    p = OptionParser(histogram.__doc__)
    p.set_histogram(vmax=50000,
                    bins=100,
                    xlabel="Read length",
                    title="Read length distribution")
    p.add_option("--ylabel1",
                 default="Counts",
                 help="Label of y-axis on the left")
    p.add_option(
        "--color",
        default="0",
        choices=[str(x) for x in range(8)],
        help="Color of bars, which is an index 0-7 in brewer set2",
    )
    opts, args, iopts = p.set_image_options(args, figsize="6x6", style="dark")

    if len(args) != 1:
        sys.exit(not p.print_help())

    (fastafile, ) = args
    fastafile, qualfile = fasta([fastafile, "--seqtk"])
    sizes = Sizes(fastafile)
    all_sizes = sorted(sizes.sizes)
    xmin, xmax, bins = opts.vmin, opts.vmax, opts.bins
    left, height = stem_leaf_plot(all_sizes, xmin, xmax, bins)

    plt.figure(1, (iopts.w, iopts.h))
    ax1 = plt.gca()

    width = (xmax - xmin) * 0.5 / bins
    color = set2[int(opts.color)]
    ax1.bar(left, height, width=width, linewidth=0, fc=color, align="center")
    ax1.set_xlabel(markup(opts.xlabel))
    ax1.set_ylabel(opts.ylabel1)

    ax2 = ax1.twinx()
    cur_size = 0
    total_size, l50, n50 = sizes.summary
    cdf = {}
    hsize = human_size(total_size)
    tag = hsize[-2:]
    unit = 1000**SUFFIXES[1000].index(tag)

    for x in all_sizes:
        if x not in cdf:
            cdf[x] = (total_size - cur_size) * 1.0 / unit
        cur_size += x
    x, y = zip(*sorted(cdf.items()))
    ax2.plot(x, y, "-", color="darkslategray")
    ylabel2 = "{0} above read length".format(tag)
    ax2.set_ylabel(ylabel2)

    for ax in (ax1, ax2):
        set_ticklabels_helvetica(ax)
        ax.set_xlim((xmin - width / 2, xmax + width / 2))

    tc = "gray"
    axt = ax1.transAxes
    xx, yy = 0.95, 0.95
    ma = "Total bases: {0}".format(hsize)
    mb = "Total reads: {0}".format(thousands(len(sizes)))
    mc = "Average read length: {0}bp".format(thousands(np.mean(all_sizes)))
    md = "Median read length: {0}bp".format(thousands(np.median(all_sizes)))
    me = "N50 read length: {0}bp".format(thousands(l50))
    for t in (ma, mb, mc, md, me):
        print(t, file=sys.stderr)
        ax1.text(xx, yy, t, color=tc, transform=axt, ha="right")
        yy -= 0.05

    ax1.set_title(markup(opts.title))
    # Seaborn removes ticks for all styles except 'ticks'. Now add them back:
    ax1.tick_params(
        axis="x",
        direction="out",
        length=3,
        left=False,
        right=False,
        top=False,
        bottom=True,
    )
    ax1.xaxis.set_major_formatter(human_base_formatter)
    ax1.yaxis.set_major_formatter(human_formatter)
    figname = sizes.filename + ".pdf"
    savefig(figname)
Esempio n. 3
0
def histogram(args):
    """
    %prog histogram [reads.fasta|reads.fastq]

    Plot read length distribution for reads. The plot would be similar to the
    one generated by SMRT-portal, for example:

    http://blog.pacificbiosciences.com/2013/10/data-release-long-read-shotgun.html

    Plot has two axes - corresponding to pdf and cdf, respectively.  Also adding
    number of reads, average/median, N50, and total length.
    """
    from jcvi.utils.cbook import human_size, thousands, SUFFIXES
    from jcvi.formats.fastq import fasta
    from jcvi.graphics.histogram import stem_leaf_plot
    from jcvi.graphics.base import plt, markup, human_formatter, \
                human_base_formatter, savefig, set2, set_ticklabels_helvetica

    p = OptionParser(histogram.__doc__)
    p.set_histogram(vmax=50000, bins=100, xlabel="Read length",
                    title="Read length distribution")
    p.add_option("--ylabel1", default="Counts",
                 help="Label of y-axis on the left")
    p.add_option("--color", default='0', choices=[str(x) for x in range(8)],
                 help="Color of bars, which is an index 0-7 in brewer set2")
    opts, args, iopts = p.set_image_options(args, figsize="6x6", style="dark")

    if len(args) != 1:
        sys.exit(not p.print_help())

    fastafile, = args
    fastafile, qualfile = fasta([fastafile, "--seqtk"])
    sizes = Sizes(fastafile)
    all_sizes = sorted(sizes.sizes)
    xmin, xmax, bins = opts.vmin, opts.vmax, opts.bins
    left, height = stem_leaf_plot(all_sizes, xmin, xmax, bins)

    plt.figure(1, (iopts.w, iopts.h))
    ax1 = plt.gca()

    width = (xmax - xmin) * .5 / bins
    color = set2[int(opts.color)]
    ax1.bar(left, height, width=width, linewidth=0, fc=color, align="center")
    ax1.set_xlabel(markup(opts.xlabel))
    ax1.set_ylabel(opts.ylabel1)

    ax2 = ax1.twinx()
    cur_size = 0
    total_size, l50, n50 = sizes.summary
    cdf = {}
    hsize = human_size(total_size)
    tag = hsize[-2:]
    unit = 1000 ** SUFFIXES[1000].index(tag)

    for x in all_sizes:
        if x not in cdf:
            cdf[x] = (total_size - cur_size) * 1. / unit
        cur_size += x
    x, y = zip(*sorted(cdf.items()))
    ax2.plot(x, y, '-', color="darkslategray")
    ylabel2 = "{0} above read length".format(tag)
    ax2.set_ylabel(ylabel2)

    for ax in (ax1, ax2):
        set_ticklabels_helvetica(ax)
        ax.set_xlim((xmin - width / 2, xmax + width / 2))

    tc = "gray"
    axt = ax1.transAxes
    xx, yy = .95, .95
    ma = "Total bases: {0}".format(hsize)
    mb = "Total reads: {0}".format(thousands(len(sizes)))
    mc = "Average read length: {0}bp".format(thousands(np.mean(all_sizes)))
    md = "Median read length: {0}bp".format(thousands(np.median(all_sizes)))
    me = "N50 read length: {0}bp".format(thousands(l50))
    for t in (ma, mb, mc, md, me):
        print >> sys.stderr, t
        ax1.text(xx, yy, t, color=tc, transform=axt, ha="right")
        yy -= .05

    ax1.set_title(markup(opts.title))
    # Seaborn removes ticks for all styles except 'ticks'. Now add them back:
    ax1.tick_params(axis="x", direction="out", length=3,
                    left=False, right=False, top=False, bottom=True)
    ax1.xaxis.set_major_formatter(human_base_formatter)
    ax1.yaxis.set_major_formatter(human_formatter)
    figname = sizes.filename + ".pdf"
    savefig(figname)
Esempio n. 4
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--vmin",
                 dest="vmin",
                 default=1,
                 type="int",
                 help="minimum value, inclusive [default: %default]")
    p.add_option("--vmax",
                 dest="vmax",
                 default=100,
                 type="int",
                 help="maximum value, inclusive [default: %default]")
    p.add_option("--pdf",
                 default=False,
                 action="store_true",
                 help="Print PDF instead of ASCII plot [default: %default]")
    p.add_option("--coverage",
                 default=0,
                 type="int",
                 help="Kmer coverage [default: auto]")
    p.add_option("--nopeaks",
                 default=False,
                 action="store_true",
                 help="Do not annotate K-mer peaks")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    peaks = not opts.nopeaks
    N = int(N)

    ks = KmerSpectrum(histfile)
    ks.analyze(K=N)

    Total_Kmers = int(ks.totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1. / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers))
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".\
                        format(Genome_size / 1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    x, y = ks.get_xy(opts.vmin, opts.vmax)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)
    ax = plt.gca()

    if peaks:
        t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
        tcounts = [(x, y) for x, y in ks.counts if x in t]
        x, y = zip(*tcounts)
        tcounts = dict(tcounts)
        plt.plot(x, y, 'ko', lw=2, mec='k', mfc='w')
        ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
        ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    tc = "gray"
    axt = ax.transAxes
    ax.text(.95, .95, Total_Kmers_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .9, Kmer_coverage_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .85, Genome_size_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .8, Repetitive_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .75, SNPrate_msg, color=tc, transform=axt, ha="right")

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title), color='r')
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel, color='r')
    ax.set_ylabel(ylabel, color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)

    return Genome_size
Esempio n. 5
0
def coverage(args):
    """
    %prog coverage fastafile ctg bedfile1 bedfile2 ..

    Plot coverage from a set of BED files that contain the read mappings. The
    paired read span will be converted to a new bedfile that contain the happy
    mates. ctg is the chr/scf/ctg that you want to plot the histogram on.

    If the bedfiles already contain the clone spans, turn on --spans.
    """
    from jcvi.formats.bed import mates, bedpe

    p = OptionParser(coverage.__doc__)
    p.add_option("--ymax",
                 default=None,
                 type="int",
                 help="Limit ymax [default: %default]")
    p.add_option(
        "--spans",
        default=False,
        action="store_true",
        help="BED files already contain clone spans [default: %default]")
    opts, args, iopts = p.set_image_options(args, figsize="8x5")

    if len(args) < 3:
        sys.exit(not p.print_help())

    fastafile, ctg = args[0:2]
    bedfiles = args[2:]

    sizes = Sizes(fastafile)
    size = sizes.mapping[ctg]

    plt.figure(1, (iopts.w, iopts.h))
    ax = plt.gca()

    bins = 100  # smooth the curve
    lines = []
    legends = []
    not_covered = []
    yy = .9
    for bedfile, c in zip(bedfiles, "rgbcky"):
        if not opts.spans:
            pf = bedfile.rsplit(".", 1)[0]
            matesfile = pf + ".mates"
            if need_update(bedfile, matesfile):
                matesfile, matesbedfile = mates([bedfile, "--lib"])

            bedspanfile = pf + ".spans.bed"
            if need_update(matesfile, bedspanfile):
                bedpefile, bedspanfile = bedpe(
                    [bedfile, "--span", "--mates={0}".format(matesfile)])
            bedfile = bedspanfile

        bedsum = Bed(bedfile).sum(seqid=ctg)
        notcoveredbases = size - bedsum

        legend = bedfile.split(".")[0]
        msg = "{0}: {1} bp not covered".format(legend,
                                               thousands(notcoveredbases))
        not_covered.append(msg)
        print >> sys.stderr, msg
        ax.text(.1, yy, msg, color=c, size=9, transform=ax.transAxes)
        yy -= .08

        cov = Coverage(bedfile, sizes.filename)
        x, y = cov.get_plot_data(ctg, bins=bins)
        line, = ax.plot(x, y, '-', color=c, lw=2, alpha=.5)
        lines.append(line)
        legends.append(legend)

    leg = ax.legend(lines, legends, shadow=True, fancybox=True)
    leg.get_frame().set_alpha(.5)

    ylabel = "Average depth per {0}Kb".format(size / bins / 1000)
    ax.set_xlim(0, size)
    ax.set_ylim(0, opts.ymax)
    ax.set_xlabel(ctg)
    ax.set_ylabel(ylabel)
    set_human_base_axis(ax)

    figname = "{0}.{1}.pdf".format(fastafile, ctg)
    savefig(figname, dpi=iopts.dpi, iopts=iopts)
Esempio n. 6
0
def coverage(args):
    """
    %prog coverage fastafile ctg bedfile1 bedfile2 ..

    Plot coverage from a set of BED files that contain the read mappings. The
    paired read span will be converted to a new bedfile that contain the happy
    mates. ctg is the chr/scf/ctg that you want to plot the histogram on.

    If the bedfiles already contain the clone spans, turn on --spans.
    """
    from jcvi.formats.bed import mates, bedpe

    p = OptionParser(coverage.__doc__)
    p.add_option("--ymax", default=None, type="int",
                 help="Limit ymax [default: %default]")
    p.add_option("--spans", default=False, action="store_true",
                 help="BED files already contain clone spans [default: %default]")
    opts, args, iopts = p.set_image_options(args, figsize="8x5")

    if len(args) < 3:
        sys.exit(not p.print_help())

    fastafile, ctg = args[0:2]
    bedfiles = args[2:]

    sizes = Sizes(fastafile)
    size = sizes.mapping[ctg]

    plt.figure(1, (iopts.w, iopts.h))
    ax = plt.gca()

    bins = 100  # smooth the curve
    lines = []
    legends = []
    not_covered = []
    yy = .9
    for bedfile, c in zip(bedfiles, "rgbcky"):
        if not opts.spans:
            pf = bedfile.rsplit(".", 1)[0]
            matesfile = pf + ".mates"
            if need_update(bedfile, matesfile):
                matesfile, matesbedfile = mates([bedfile, "--lib"])

            bedspanfile = pf + ".spans.bed"
            if need_update(matesfile, bedspanfile):
                bedpefile, bedspanfile = bedpe([bedfile, "--span",
                    "--mates={0}".format(matesfile)])
            bedfile = bedspanfile

        bedsum = Bed(bedfile).sum(seqid=ctg)
        notcoveredbases = size - bedsum

        legend = bedfile.split(".")[0]
        msg = "{0}: {1} bp not covered".format(legend, thousands(notcoveredbases))
        not_covered.append(msg)
        print >> sys.stderr, msg
        ax.text(.1, yy, msg, color=c, size=9, transform=ax.transAxes)
        yy -= .08

        cov = Coverage(bedfile, sizes.filename)
        x, y = cov.get_plot_data(ctg, bins=bins)
        line, = ax.plot(x, y, '-', color=c, lw=2, alpha=.5)
        lines.append(line)
        legends.append(legend)

    leg = ax.legend(lines, legends, shadow=True, fancybox=True)
    leg.get_frame().set_alpha(.5)

    ylabel = "Average depth per {0}Kb".format(size / bins / 1000)
    ax.set_xlim(0, size)
    ax.set_ylim(0, opts.ymax)
    ax.set_xlabel(ctg)
    ax.set_ylabel(ylabel)
    set_human_base_axis(ax)

    figname ="{0}.{1}.pdf".format(fastafile, ctg)
    savefig(figname, dpi=iopts.dpi, iopts=iopts)
Esempio n. 7
0
def variation(args):
    """
    %prog variation P1.bed P2.bed F1.bed

    Associate IES in parents and progeny.
    """
    p = OptionParser(variation.__doc__)
    p.add_option("--diversity",
                 choices=("breakpoint", "variant"),
                 default="variant",
                 help="Plot diversity")
    opts, args, iopts = p.set_image_options(args, figsize="6x6")

    if len(args) != 3:
        sys.exit(not p.print_help())

    pfs = [op.basename(x).split('-')[0] for x in args]
    P1, P2, F1 = pfs
    newbedfile = "-".join(pfs) + ".bed"
    if need_update(args, newbedfile):
        newbed = Bed()
        for pf, filename in zip(pfs, args):
            bed = Bed(filename)
            for b in bed:
                b.accn = "-".join((pf, b.accn))
                b.score = None
                newbed.append(b)
        newbed.print_to_file(newbedfile, sorted=True)

    neworder = Bed(newbedfile).order
    mergedbedfile = mergeBed(newbedfile, nms=True)
    bed = Bed(mergedbedfile)
    valid = 0
    total_counts = Counter()
    F1_counts = []
    bp_diff = []
    novelbedfile = "novel.bed"
    fw = open(novelbedfile, "w")
    for b in bed:
        accns = b.accn.split(',')
        pfs_accns = [x.split("-")[0] for x in accns]
        pfs_counts = Counter(pfs_accns)
        if len(pfs_counts) != 3:
            print(b, file=fw)
            continue

        valid += 1
        total_counts += pfs_counts
        F1_counts.append(pfs_counts[F1])

        # Collect breakpoint positions between P1 and F1
        P1_accns = [x for x in accns if x.split("-")[0] == P1]
        F1_accns = [x for x in accns if x.split("-")[0] == F1]
        if len(P1_accns) != 1:
            continue

        ri, ref = neworder[P1_accns[0]]
        P1_accns = [neworder[x][-1] for x in F1_accns]
        bp_diff.extend(x.start - ref.start for x in P1_accns)
        bp_diff.extend(x.end - ref.end for x in P1_accns)

    print("A total of {0} sites show consistent deletions across samples.".\
                    format(percentage(valid, len(bed))), file=sys.stderr)
    for pf, count in total_counts.items():
        print("{0:>9}: {1:.2f} deletions/site".\
                    format(pf, count * 1. / valid), file=sys.stderr)

    F1_counts = Counter(F1_counts)

    # Plot the IES variant number diversity
    from jcvi.graphics.base import plt, savefig, set_ticklabels_helvetica

    fig = plt.figure(1, (iopts.w, iopts.h))
    if opts.diversity == "variant":
        left, height = zip(*sorted(F1_counts.items()))
        for l, h in zip(left, height):
            print("{0:>9} variants: {1}".format(l, h), file=sys.stderr)
            plt.text(l,
                     h + 5,
                     str(h),
                     color="darkslategray",
                     size=8,
                     ha="center",
                     va="bottom",
                     rotation=90)

        plt.bar(left, height, align="center")
        plt.xlabel("Identified number of IES per site")
        plt.ylabel("Counts")
        plt.title("IES variation in progeny pool")
        ax = plt.gca()
        set_ticklabels_helvetica(ax)
        savefig(F1 + ".counts.pdf")

    # Plot the IES breakpoint position diversity
    else:
        bp_diff = Counter(bp_diff)
        bp_diff_abs = Counter()
        for k, v in bp_diff.items():
            bp_diff_abs[abs(k)] += v
        plt.figure(1, (iopts.w, iopts.h))
        left, height = zip(*sorted(bp_diff_abs.items()))
        for l, h in zip(left, height)[:21]:
            plt.text(l,
                     h + 50,
                     str(h),
                     color="darkslategray",
                     size=8,
                     ha="center",
                     va="bottom",
                     rotation=90)

        plt.bar(left, height, align="center")
        plt.xlabel("Progeny breakpoint relative to SB210")
        plt.ylabel("Counts")
        plt.xlim(-.5, 20.5)
        ax = plt.gca()
        set_ticklabels_helvetica(ax)
        savefig(F1 + ".breaks.pdf")
        # Serialize the data to a file
        fw = open("Breakpoint-offset-histogram.csv", "w")
        for k, v in sorted(bp_diff.items()):
            print("{0},{1}".format(k, v), file=fw)
        fw.close()

        total = sum(height)
        zeros = bp_diff[0]
        within_20 = sum([v for i, v in bp_diff.items() if -20 <= i <= 20])
        print("No deviation: {0}".format(percentage(zeros, total)),
              file=sys.stderr)
        print(" Within 20bp: {0}".format(percentage(within_20, total)),
              file=sys.stderr)
Esempio n. 8
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--vmin", dest="vmin", default=1, type="int",
            help="minimum value, inclusive [default: %default]")
    p.add_option("--vmax", dest="vmax", default=100, type="int",
            help="maximum value, inclusive [default: %default]")
    p.add_option("--pdf", default=False, action="store_true",
            help="Print PDF instead of ASCII plot [default: %default]")
    p.add_option("--coverage", default=0, type="int",
            help="Kmer coverage [default: auto]")
    p.add_option("--nopeaks", default=False, action="store_true",
            help="Do not annotate K-mer peaks")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    N = int(N)
    KMERYL, KSOAP, KALLPATHS = range(3)
    kformats = ("Meryl", "Soap", "AllPaths")
    kformat = KMERYL

    ascii = not opts.pdf
    peaks = not opts.nopeaks
    fp = open(histfile)
    hist = {}
    totalKmers = 0

    # Guess the format of the Kmer histogram
    for row in fp:
        if row.startswith("# 1:"):
            kformat = KALLPATHS
            break
        if len(row.split()) == 1:
            kformat = KSOAP
            break
    fp.seek(0)

    logging.debug("Guessed format: {0}".format(kformats[kformat]))

    data = []
    for rowno, row in enumerate(fp):
        if row[0] == '#':
            continue
        if kformat == KSOAP:
            K = rowno + 1
            counts = int(row.strip())
        else:  # meryl histogram
            K, counts = row.split()[:2]
            K, counts = int(K), int(counts)

        Kcounts = K * counts
        totalKmers += Kcounts
        hist[K] = Kcounts
        data.append((K, counts))

    covmax = 1000000
    ks = KmerSpectrum(data)
    ks.analyze(K=N, covmax=covmax)

    Total_Kmers = int(totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1. / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, Total_Kmers)
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".\
                        format(Genome_size / 1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    counts = sorted((a, b) for a, b in hist.items() \
                    if opts.vmin <= a <= opts.vmax)
    x, y = zip(*counts)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)
    ax = plt.gca()

    t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
    tcounts = [(x, y) for x, y in counts if x in t]
    x, y = zip(*tcounts)
    plt.plot(x, y, 'ko', lw=2, mec='k', mfc='w')
    tcounts = dict(tcounts)

    if peaks:
        ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
        ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    tc = "gray"
    axt = ax.transAxes
    ax.text(.95, .95, Total_Kmers_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .9, Kmer_coverage_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .85, Genome_size_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .8, Repetitive_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .75, SNPrate_msg, color=tc, transform=axt, ha="right")

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title), color='r')
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel, color='r')
    ax.set_ylabel(ylabel, color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)

    return Genome_size
Esempio n. 9
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--vmin", dest="vmin", default=1, type="int", help="minimum value, inclusive [default: %default]")
    p.add_option("--vmax", dest="vmax", default=100, type="int", help="maximum value, inclusive [default: %default]")
    p.add_option(
        "--pdf", default=False, action="store_true", help="Print PDF instead of ASCII plot [default: %default]"
    )
    p.add_option("--coverage", default=0, type="int", help="Kmer coverage [default: auto]")
    p.add_option("--nopeaks", default=False, action="store_true", help="Do not annotate K-mer peaks")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    peaks = not opts.nopeaks
    N = int(N)

    if histfile.rsplit(".", 1)[-1] in ("mcdat", "mcidx"):
        logging.debug("CA kmer index found")
        histfile = meryl([histfile])

    ks = KmerSpectrum(histfile)
    ks.analyze(K=N)

    Total_Kmers = int(ks.totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1.0 / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers))
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size / 1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    x, y = ks.get_xy(opts.vmin, opts.vmax)
    title = "{0} {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (6, 6))
    plt.plot(x, y, "g-", lw=2, alpha=0.5)
    ax = plt.gca()

    if peaks:
        t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
        tcounts = [(x, y) for x, y in ks.counts if x in t]
        if tcounts:
            x, y = zip(*tcounts)
            tcounts = dict(tcounts)
            plt.plot(x, y, "ko", lw=2, mec="k", mfc="w")
            ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
            ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    messages = [Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg, Repetitive_msg, SNPrate_msg]
    write_messages(ax, messages)

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title))
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)

    return Genome_size
Esempio n. 10
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic.
    """
    p = OptionParser(histogram.__doc__)
    p.add_option(
        "--vmin",
        dest="vmin",
        default=1,
        type="int",
        help="minimum value, inclusive",
    )
    p.add_option(
        "--vmax",
        dest="vmax",
        default=100,
        type="int",
        help="maximum value, inclusive",
    )
    p.add_option(
        "--pdf",
        default=False,
        action="store_true",
        help="Print PDF instead of ASCII plot",
    )
    p.add_option("--coverage",
                 default=0,
                 type="int",
                 help="Kmer coverage [default: auto]")
    p.add_option(
        "--nopeaks",
        default=False,
        action="store_true",
        help="Do not annotate K-mer peaks",
    )
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    peaks = not opts.nopeaks
    N = int(N)

    if histfile.rsplit(".", 1)[-1] in ("mcdat", "mcidx"):
        logging.debug("CA kmer index found")
        histfile = merylhistogram(histfile)

    ks = KmerSpectrum(histfile)
    ks.analyze(K=N)

    Total_Kmers = int(ks.totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1.0 / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers))
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size /
                                                                1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print(msg, file=sys.stderr)

    x, y = ks.get_xy(opts.vmin, opts.vmax)
    title = "{0} {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (6, 6))
    plt.plot(x, y, "g-", lw=2, alpha=0.5)
    ax = plt.gca()

    if peaks:
        t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
        tcounts = [(x, y) for x, y in ks.counts if x in t]
        if tcounts:
            x, y = zip(*tcounts)
            tcounts = dict(tcounts)
            plt.plot(x, y, "ko", lw=2, mec="k", mfc="w")
            ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
            ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    messages = [
        Total_Kmers_msg,
        Kmer_coverage_msg,
        Genome_size_msg,
        Repetitive_msg,
        SNPrate_msg,
    ]
    write_messages(ax, messages)

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title))
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)

    return Genome_size
Esempio n. 11
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--vmin",
                 dest="vmin",
                 default=1,
                 type="int",
                 help="minimum value, inclusive [default: %default]")
    p.add_option("--vmax",
                 dest="vmax",
                 default=100,
                 type="int",
                 help="maximum value, inclusive [default: %default]")
    p.add_option("--pdf",
                 default=False,
                 action="store_true",
                 help="Print PDF instead of ASCII plot [default: %default]")
    p.add_option("--coverage",
                 default=0,
                 type="int",
                 help="Kmer coverage [default: auto]")
    p.add_option("--nopeaks",
                 default=False,
                 action="store_true",
                 help="Do not annotate K-mer peaks")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    N = int(N)
    KMERYL, KSOAP, KALLPATHS = range(3)
    kformats = ("Meryl", "Soap", "AllPaths")
    kformat = KMERYL

    ascii = not opts.pdf
    peaks = not opts.nopeaks
    fp = open(histfile)
    hist = {}
    totalKmers = 0

    # Guess the format of the Kmer histogram
    for row in fp:
        if row.startswith("# 1:"):
            kformat = KALLPATHS
            break
        if len(row.split()) == 1:
            kformat = KSOAP
            break
    fp.seek(0)

    logging.debug("Guessed format: {0}".format(kformats[kformat]))

    data = []
    for rowno, row in enumerate(fp):
        if row[0] == '#':
            continue
        if kformat == KSOAP:
            K = rowno + 1
            counts = int(row.strip())
        else:  # meryl histogram
            K, counts = row.split()[:2]
            K, counts = int(K), int(counts)

        Kcounts = K * counts
        totalKmers += Kcounts
        hist[K] = Kcounts
        data.append((K, counts))

    covmax = 1000000
    ks = KmerSpectrum(data)
    ks.analyze(K=N, covmax=covmax)

    Total_Kmers = int(totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = Total_Kmers * 1. / Kmer_coverage / 1e6

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, Total_Kmers)
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    counts = sorted((a, b) for a, b in hist.items() \
                    if opts.vmin <= a <= opts.vmax)
    x, y = zip(*counts)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        return asciiplot(x, y, title=title)

    plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)
    ax = plt.gca()

    t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
    tcounts = [(x, y) for x, y in counts if x in t]
    x, y = zip(*tcounts)
    plt.plot(x, y, 'ko', lw=2, mec='k', mfc='w')
    tcounts = dict(tcounts)

    if peaks:
        ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
        ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    tc = "gray"
    axt = ax.transAxes
    ax.text(.95, .95, Total_Kmers_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .9, Kmer_coverage_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .85, Genome_size_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .8, Repetitive_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .75, SNPrate_msg, color=tc, transform=axt, ha="right")

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title), color='r')
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel, color='r')
    ax.set_ylabel(ylabel, color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)
Esempio n. 12
0
File: ies.py Progetto: Hensonmw/jcvi
def variation(args):
    """
    %prog variation P1.bed P2.bed F1.bed

    Associate IES in parents and progeny.
    """
    p = OptionParser(variation.__doc__)
    p.add_option("--diversity", choices=("breakpoint", "variant"),
                 default="variant", help="Plot diversity")
    opts, args, iopts = p.set_image_options(args, figsize="6x6")

    if len(args) != 3:
        sys.exit(not p.print_help())

    pfs = [op.basename(x).split('-')[0] for x in args]
    P1, P2, F1 = pfs
    newbedfile = "-".join(pfs) + ".bed"
    if need_update(args, newbedfile):
        newbed = Bed()
        for pf, filename in zip(pfs, args):
            bed = Bed(filename)
            for b in bed:
                b.accn = "-".join((pf, b.accn))
                b.score = None
                newbed.append(b)
        newbed.print_to_file(newbedfile, sorted=True)

    neworder = Bed(newbedfile).order
    mergedbedfile = mergeBed(newbedfile, nms=True)
    bed = Bed(mergedbedfile)
    valid = 0
    total_counts = Counter()
    F1_counts = []
    bp_diff = []
    novelbedfile = "novel.bed"
    fw = open(novelbedfile, "w")
    for b in bed:
        accns = b.accn.split(',')
        pfs_accns = [x.split("-")[0] for x in accns]
        pfs_counts = Counter(pfs_accns)
        if len(pfs_counts) != 3:
            print >> fw, b
            continue

        valid += 1
        total_counts += pfs_counts
        F1_counts.append(pfs_counts[F1])

        # Collect breakpoint positions between P1 and F1
        P1_accns = [x for x in accns if x.split("-")[0] == P1]
        F1_accns = [x for x in accns if x.split("-")[0] == F1]
        if len(P1_accns) != 1:
            continue

        ri, ref = neworder[P1_accns[0]]
        P1_accns = [neworder[x][-1] for x in F1_accns]
        bp_diff.extend(x.start - ref.start for x in P1_accns)
        bp_diff.extend(x.end - ref.end for x in P1_accns)

    print >> sys.stderr, \
            "A total of {0} sites show consistent deletions across samples.".\
                    format(percentage(valid, len(bed)))
    for pf, count in total_counts.items():
        print >> sys.stderr, "{0:>9}: {1:.2f} deletions/site".\
                    format(pf, count * 1. / valid)

    F1_counts = Counter(F1_counts)

    # Plot the IES variant number diversity
    from jcvi.graphics.base import plt, savefig, set_ticklabels_helvetica

    fig = plt.figure(1, (iopts.w, iopts.h))
    if opts.diversity == "variant":
        left, height = zip(*sorted(F1_counts.items()))
        for l, h in zip(left, height):
            print >> sys.stderr, "{0:>9} variants: {1}".format(l, h)
            plt.text(l, h + 5, str(h), color="darkslategray", size=8,
                     ha="center", va="bottom", rotation=90)

        plt.bar(left, height, align="center")
        plt.xlabel("Identified number of IES per site")
        plt.ylabel("Counts")
        plt.title("IES variation in progeny pool")
        ax = plt.gca()
        set_ticklabels_helvetica(ax)
        savefig(F1 + ".counts.pdf")

    # Plot the IES breakpoint position diversity
    else:
        bp_diff = Counter(bp_diff)
        bp_diff_abs = Counter()
        for k, v in bp_diff.items():
            bp_diff_abs[abs(k)] += v
        plt.figure(1, (iopts.w, iopts.h))
        left, height = zip(*sorted(bp_diff_abs.items()))
        for l, h in zip(left, height)[:21]:
            plt.text(l, h + 50, str(h), color="darkslategray", size=8,
                     ha="center", va="bottom", rotation=90)

        plt.bar(left, height, align="center")
        plt.xlabel("Progeny breakpoint relative to SB210")
        plt.ylabel("Counts")
        plt.xlim(-.5, 20.5)
        ax = plt.gca()
        set_ticklabels_helvetica(ax)
        savefig(F1 + ".breaks.pdf")
        # Serialize the data to a file
        fw = open("Breakpoint-offset-histogram.csv", "w")
        for k, v in sorted(bp_diff.items()):
            print >> fw, "{0},{1}".format(k, v)
        fw.close()

        total = sum(height)
        zeros = bp_diff[0]
        within_20 = sum([v for i, v in bp_diff.items() if -20 <= i <= 20])
        print >> sys.stderr, "No deviation: {0}".format(percentage(zeros, total))
        print >> sys.stderr, " Within 20bp: {0}".format(percentage(within_20, total))
Esempio n. 13
0
File: kmer.py Progetto: bennyyu/jcvi
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--pdf", default=False, action="store_true",
            help="Print PDF instead of ASCII plot [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    fp = open(histfile)
    hist = {}
    totalKmers = 0

    # Guess the format of the Kmer histogram
    soap = False
    for row in fp:
        if len(row.split()) == 1:
            soap = True
            break
    fp.seek(0)

    for rowno, row in enumerate(fp):
        if soap:
            K = rowno + 1
            counts = int(row.strip())
        else:  # meryl histogram
            K, counts = row.split()[:2]
            K, counts = int(K), int(counts)

        Kcounts = K * counts
        totalKmers += Kcounts
        hist[K] = counts

    history = ["drop"]
    for a, b in pairwise(sorted(hist.items())):
        Ka, ca = a
        Kb, cb = b
        if ca <= cb:
            status = "rise"
        else:
            status = "drop"
        if history[-1] != status:
            history.append(status)
        if history == ["drop", "rise", "drop"]:
            break

    Total_Kmers = int(totalKmers)
    Kmer_coverage = Ka
    Genome_size = Total_Kmers * 1. / Ka / 1e6

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, Total_Kmers)
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size)

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    counts = sorted((a, b) for a, b in hist.items() if a <= 100)
    x, y = zip(*counts)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        return asciiplot(x, y, title=title)

    fig = plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)

    ax = plt.gca()
    ax.text(.5, .9, _(Total_Kmers_msg),
            ha="center", color='b', transform=ax.transAxes)
    ax.text(.5, .8, _(Kmer_coverage_msg),
            ha="center", color='b', transform=ax.transAxes)
    ax.text(.5, .7, _(Genome_size_msg),
            ha="center", color='b', transform=ax.transAxes)

    ax.set_title(_(title), color='r')
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(_(xlabel), color='r')
    ax.set_ylabel(_(ylabel), color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    plt.savefig(imagename, dpi=100)
    print >> sys.stderr, "Image saved to `{0}`.".format(imagename)
Esempio n. 14
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--pdf",
                 default=False,
                 action="store_true",
                 help="Print PDF instead of ASCII plot [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    fp = open(histfile)
    hist = {}
    totalKmers = 0

    # Guess the format of the Kmer histogram
    soap = False
    for row in fp:
        if len(row.split()) == 1:
            soap = True
            break
    fp.seek(0)

    for rowno, row in enumerate(fp):
        if soap:
            K = rowno + 1
            counts = int(row.strip())
        else:  # meryl histogram
            K, counts = row.split()[:2]
            K, counts = int(K), int(counts)

        Kcounts = K * counts
        totalKmers += Kcounts
        hist[K] = counts

    history = ["drop"]
    for a, b in pairwise(sorted(hist.items())):
        Ka, ca = a
        Kb, cb = b
        if ca <= cb:
            status = "rise"
        else:
            status = "drop"
        if history[-1] != status:
            history.append(status)
        if history == ["drop", "rise", "drop"]:
            break

    Total_Kmers = int(totalKmers)
    Kmer_coverage = Ka
    Genome_size = Total_Kmers * 1. / Ka / 1e6

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, Total_Kmers)
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size)

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    counts = sorted((a, b) for a, b in hist.items() if a <= 100)
    x, y = zip(*counts)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        return asciiplot(x, y, title=title)

    fig = plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)

    ax = plt.gca()
    ax.text(.5,
            .9,
            _(Total_Kmers_msg),
            ha="center",
            color='b',
            transform=ax.transAxes)
    ax.text(.5,
            .8,
            _(Kmer_coverage_msg),
            ha="center",
            color='b',
            transform=ax.transAxes)
    ax.text(.5,
            .7,
            _(Genome_size_msg),
            ha="center",
            color='b',
            transform=ax.transAxes)

    ax.set_title(_(title), color='r')
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(_(xlabel), color='r')
    ax.set_ylabel(_(ylabel), color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    plt.savefig(imagename, dpi=100)
    print >> sys.stderr, "Image saved to `{0}`.".format(imagename)