def pento(n_trials): ri = numpy.random.random_integers state = DD() with open('mnist_powerup_temp.yaml') as ymtmp: state.yaml_string = ymtmp.read() state.powerup_nunits = 240 state.powerup_npieces = 5 state.W_lr_scale = 0.04 state.p_lr_scale = 0.01 state.lr_rate = 0.1 state.l2_pen = 1e-5 state.l2_pen2 = 0.0000 state.init_mom = 0.5 state.final_mom = 0.5 state.decay_factor = 0.5 state.max_col_norm = 1.9365 state.max_col_norm2 = 1.8365 state.batch_size = 128 state.save_path = './' n_pieces = [2, 3, 4, 5, 6, 8, 10, 12, 14, 16] n_units = [200, 240, 280, 320, 360, 420, 480] batch_sizes = [128, 256, 512] learning_rates = numpy.logspace(numpy.log10(0.001), numpy.log10(1.0), 30) learning_rate_scalers = numpy.logspace(numpy.log10(0.01), numpy.log10(1), 30) l2_pen = numpy.logspace(numpy.log10(1e-6), numpy.log10(8*1e-3), 100) max_col_norms = [1.7365, 1.8365, 1.9365, 2.1365, 2.2365, 2.4365] ind = 0 TABLE_NAME = "powerup_mnist_1layer_fixed" db = api0.open_db('postgresql://[email protected]/gulcehrc_db?table=' + TABLE_NAME) for i in xrange(n_trials): state.lr_rate = learning_rates[ri(learning_rates.shape[0]) - 1] state.powerup_nunits = n_units[ri(len(n_units)) - 1] state.powerup_npieces = n_pieces[ri(len(n_pieces)) - 1] state.W_lr_scale = learning_rate_scalers[ri(len(learning_rate_scalers)) - 1] state.p_lr_scale = learning_rate_scalers[ri(len(learning_rate_scalers)) - 1] state.batch_size = batch_sizes[ri(len(batch_sizes)) - 1] state.l2_pen = l2_pen[ri(l2_pen.shape[0]) - 1] state.init_mom = numpy.random.uniform(low=0.3, high=0.6) state.final_mom = numpy.random.uniform(low=state.init_mom + 0.1, high=0.9) state.decay_factor = numpy.random.uniform(low=0.01, high=0.05) state.max_col_norm = max_col_norms[ri(len(max_col_norms)) - 1] alphabet = list('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUWXYZ0123456789') numpy.random.shuffle(alphabet) state.save_path = './' state.save_path += ''.join(alphabet[:7]) + '_' sql.insert_job(experiment, flatten(state), db) ind += 1 db.createView(TABLE_NAME + '_view') print "{} jobs submitted".format(ind)
def tfd(n_trials): ri = numpy.random.random_integers state = DD() with open('mnist_powerup_temp_l2.yaml') as ymtmp: state.yaml_string = ymtmp.read() state.powerup_nunits = 240 state.powerup_npieces = 5 state.powerup_nunits2 = 240 state.powerup_npieces2 = 5 state.W_lr_scale = 0.04 state.p_lr_scale = 0.01 state.lr_rate = 0.1 state.init_mom = 0.5 state.final_mom = 0.5 state.decay_factor = 0.5 state.max_col_norm = 1.9365 state.save_path = './' n_pieces = [2, 3, 4, 5] n_units = [200, 240, 320, 360, 420, 480] learning_rates = numpy.logspace(numpy.log10(0.09), numpy.log10(1.2), 60) learning_rate_scalers = numpy.logspace(numpy.log10(0.1), numpy.log10(1), 50) decay_factors = numpy.logspace(numpy.log10(0.001), numpy.log10(0.06), 40) max_col_norms = [1.8365, 1.9365, 2.1365, 2.2365, 2.3486] ind = 0 TABLE_NAME = "powerup_mnist_finest_large_2l" db = api0.open_db('postgresql://[email protected]/gulcehrc_db?table=' + TABLE_NAME) for i in xrange(n_trials): state.lr_rate = learning_rates[ri(learning_rates.shape[0]) - 1] state.powerup_nunits = n_units[ri(len(n_units)) - 1] state.powerup_npieces = n_pieces[ri(len(n_pieces) - 1)] state.powerup_nunits2 = state.powerup_nunits state.powerup_npieces2 = state.powerup_npieces state.W_lr_scale = numpy.random.uniform(low=0.09, high=1.0) state.p_lr_scale = numpy.random.uniform(low=0.09, high=1.0) state.init_mom = numpy.random.uniform(low=0.3, high=0.6) state.final_mom = numpy.random.uniform(low=state.init_mom + 0.1, high=0.9) state.decay_factor = decay_factors[ri(len(decay_factors)) - 1] state.max_col_norm = max_col_norms[ri(len(max_col_norms)) - 1] alphabet = list('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUWXYZ0123456789') state.save_path = './' state.save_path += ''.join(alphabet[:7]) + '_' sql.insert_job(experiment, flatten(state), db) ind += 1 db.createView(TABLE_NAME + '_view') print "{} jobs submitted".format(ind)
def tfd(n_trials): ri = numpy.random.random_integers state = DD() with open("tfd_powerup_temp.yaml") as ymtmp: state.yaml_string = ymtmp.read() state.powerup_nunits = 240 state.powerup_npieces = 5 state.W_lr_scale = 0.04 state.p_lr_scale = 0.01 state.lr_rate = 0.1 state.l2_pen = 1e-5 state.l2_pen2 = 0.0000 state.init_mom = 0.5 state.final_mom = 0.5 state.decay_factor = 0.5 state.max_col_norm = 1.9365 state.max_col_norm2 = 1.8365 state.save_path = "./" n_pieces = [2, 3, 4, 5, 6, 8, 10, 12, 14, 16] n_units = [200, 240, 280, 320, 420] learning_rates = numpy.logspace(numpy.log10(0.001), numpy.log10(1.0), 32) learning_rate_scalers = numpy.logspace(numpy.log10(0.01), numpy.log10(1), 30) l2_pen = numpy.logspace(numpy.log10(1e-6), numpy.log10(3 * 1e-3), 100) max_col_norms = [1.8365, 1.9365, 2.1365, 2.2365, 2.3486, 2.4365] ind = 0 TABLE_NAME = "powerup_tfd_1layer_finer_large2" db = api0.open_db("postgresql://[email protected]/gulcehrc_db?table=" + TABLE_NAME) for i in xrange(n_trials): state.lr_rate = learning_rates[ri(learning_rates.shape[0]) - 1] state.powerup_nunits = n_units[ri(len(n_units)) - 1] if state.powerup_nunits >= 320: state.powerup_npieces = n_pieces[ri(low=0, high=5)] else: state.powerup_npieces = n_pieces[ri(low=3, high=(len(n_pieces) - 1))] state.W_lr_scale = learning_rate_scalers[ri(len(learning_rate_scalers)) - 1] state.p_lr_scale = learning_rate_scalers[ri(len(learning_rate_scalers)) - 1] state.l2_pen = l2_pen[ri(l2_pen.shape[0]) - 1] state.init_mom = numpy.random.uniform(low=0.3, high=0.6) state.final_mom = numpy.random.uniform(low=state.init_mom + 1.0, high=0.9) state.decay_factor = numpy.random.uniform(low=0.01, high=0.05) state.max_col_norm = max_col_norms[ri(len(max_col_norms)) - 1] alphabet = list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUWXYZ0123456789") state.save_path = "./" state.save_path += "".join(alphabet[:7]) + "_" sql.insert_job(experiment, flatten(state), db) ind += 1 db.createView(TABLE_NAME + "_view") print "{} jobs submitted".format(ind)