def jobman_insert_random(n_jobs, table_name="emotiw_mlp_audio_fixed_pool2_mixed_grbmx2" ): JOBDB = 'postgresql://[email protected]/gulcehrc_db?table=' + table_name EXPERIMENT_PATH = "experiment_cg_2layer_sigm_hyper2_fixed2_pool2_save_mixed_grbmx2.jobman_entrypoint" nlr = 45 learning_rates = numpy.logspace(numpy.log10(0.0008), numpy.log10(0.09), nlr) max_col_norms = [1.9835, 1.8256, 1.2124, 0.98791] jobs = [] for _ in range(n_jobs): job = DD() id_lr = numpy.random.random_integers(0, nlr - 1) rnd_maxcn = numpy.random.random_integers(0, len(max_col_norms) - 1) job.n_hiddens = numpy.random.random_integers( 2, 5) * 100 + 2 * numpy.random.random_integers(0, 15) job.n_layers = 2 job.learning_rate = learning_rates[id_lr] job.momentum = 10.**numpy.random.uniform(-1, -0) job.hidden_dropout = numpy.random.uniform(low=0.1, high=0.2) job.layer_dropout = 0 job.topN_pooling = 1 job.no_final_dropout = 1 job.l2 = numpy.random.random_integers(1, 20) * 1e-3 job.rmsprop = 1 job.normalize_acts = 0 job.enable_standardization = 0 job.response_normalize = 0 job.rbm_epochs = 15 job.rho = 0.94 job.validerror = 0.0 job.loss = 0.0 job.epoch = 0 job.epoch_time = 0 job.use_nesterov = 1 job.trainerror = 0.0 job.features = "full.pca" job.max_col_norm = max_col_norms[rnd_maxcn] job.example_dropout = numpy.random.randint(60, 200) job.tag = "relu_nlayers_dbn" jobs.append(job) print job answer = raw_input("Submit %d jobs?[y/N] " % len(jobs)) if answer == "y": numpy.random.shuffle(jobs) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted %d jobs" % len(jobs) print "To run: jobdispatch --condor --mem=3G --gpu --env=THEANO_FLAGS='floatX=float32, device=gpu' --repeat_jobs=%d jobman sql -n 1 '%s' ." % ( len(jobs), JOBDB)
def jobman_insert_random(n_jobs): JOBDB = 'postgres://[email protected]/dauphiya_db/emotiw_mlp_audio' EXPERIMENT_PATH = "experiment.jobman_entrypoint" jobs = [] for _ in range(n_jobs): job = DD() job.n_hiddens = numpy.random.randint(8, 512) job.n_layers = numpy.random.randint(1, 4) job.learning_rate = 10.**numpy.random.uniform(-3, -0) job.momentum = 10.**numpy.random.uniform(-1, -0) job.features = ["minimal.pca", "full.pca"][numpy.random.binomial(1, 0.5)] job.example_dropout = numpy.random.randint(16, 200) job.rbm_learning_rate = 10.**numpy.random.uniform(-3, -0) job.rbm_epochs = numpy.random.randint(8, 100) job.tag = "pretrain" jobs.append(job) print job answer = raw_input("Submit %d jobs?[y/N] " % len(jobs)) if answer == "y": numpy.random.shuffle(jobs) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted %d jobs" % len(jobs) print "To run: jobdispatch --condor --repeat_jobs=%d jobman sql -n 1 'postgres://[email protected]/dauphiya_db/emotiw_mlp_audio' ." % len(jobs)
def jobman_insert_random(n_jobs): JOBDB = 'postgres://[email protected]/dauphiya_db/emotiw_mlp_audio' EXPERIMENT_PATH = "experiment.jobman_entrypoint" jobs = [] for _ in range(n_jobs): job = DD() job.n_hiddens = numpy.random.randint(8, 512) job.n_layers = numpy.random.randint(1, 4) job.learning_rate = 10.**numpy.random.uniform(-3, -0) job.momentum = 10.**numpy.random.uniform(-1, -0) job.features = ["minimal.pca", "full.pca"][numpy.random.binomial(1, 0.5)] job.example_dropout = numpy.random.randint(16, 200) job.rbm_learning_rate = 10.**numpy.random.uniform(-3, -0) job.rbm_epochs = numpy.random.randint(8, 100) job.tag = "pretrain" jobs.append(job) print job answer = raw_input("Submit %d jobs?[y/N] " % len(jobs)) if answer == "y": numpy.random.shuffle(jobs) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted %d jobs" % len(jobs) print "To run: jobdispatch --condor --repeat_jobs=%d jobman sql -n 1 'postgres://[email protected]/dauphiya_db/emotiw_mlp_audio' ." % len( jobs)
def jobman_insert_random(n_jobs, table_name="emotiw_mlp_audio_fixed_pool2_mixed_grbmx2"): JOBDB = 'postgresql://[email protected]/gulcehrc_db?table=' + table_name EXPERIMENT_PATH = "experiment_cg_2layer_sigm_hyper2_fixed2_pool2_save_mixed_grbmx2.jobman_entrypoint" nlr = 45 learning_rates = numpy.logspace(numpy.log10(0.0008), numpy.log10(0.09), nlr) max_col_norms = [1.9835, 1.8256, 1.2124, 0.98791] jobs = [] for _ in range(n_jobs): job = DD() id_lr = numpy.random.random_integers(0, nlr-1) rnd_maxcn = numpy.random.random_integers(0, len(max_col_norms)-1) job.n_hiddens = numpy.random.random_integers(2,5) * 100 + 2 * numpy.random.random_integers(0,15) job.n_layers = 2 job.learning_rate = learning_rates[id_lr] job.momentum = 10.**numpy.random.uniform(-1, -0) job.hidden_dropout = numpy.random.uniform(low=0.1, high=0.2) job.layer_dropout = 0 job.topN_pooling = 1 job.no_final_dropout = 1 job.l2 = numpy.random.random_integers(1, 20) * 1e-3 job.rmsprop = 1 job.normalize_acts = 0 job.enable_standardization = 0 job.response_normalize = 0 job.rbm_epochs = 15 job.rho = 0.94 job.validerror = 0.0 job.loss = 0.0 job.epoch = 0 job.epoch_time = 0 job.use_nesterov = 1 job.trainerror = 0.0 job.features = "full.pca" job.max_col_norm = max_col_norms[rnd_maxcn] job.example_dropout = numpy.random.randint(60, 200) job.tag = "relu_nlayers_dbn" jobs.append(job) print job answer = raw_input("Submit %d jobs?[y/N] " % len(jobs)) if answer == "y": numpy.random.shuffle(jobs) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted %d jobs" % len(jobs) print "To run: jobdispatch --condor --mem=3G --gpu --env=THEANO_FLAGS='floatX=float32, device=gpu' --repeat_jobs=%d jobman sql -n 1 '%s' ." % (len(jobs), JOBDB)
def jobman_insert_random(n_jobs, table_name="emotiw_mlp_audio_sigm_fixed_pool2_mixed_norbm3"): JOBDB = 'postgresql://[email protected]/gulcehrc_db?table=' + table_name EXPERIMENT_PATH = "experiment_cg_2layer_sigm_hyper2_fixed2_pool2_save_mixed_norbm3.jobman_entrypoint" nlr = 45 learning_rates = numpy.logspace(numpy.log10(0.0008), numpy.log10(0.1), nlr) max_col_norms = [1.8256, 1.5679, 1.2124, 0.98791] rhos = [0.96, 0.92, 0.88] jobs = [] for _ in range(n_jobs): job = DD() id_lr = numpy.random.random_integers(0, nlr-1) rnd_maxcn = numpy.random.random_integers(0, len(max_col_norms)-1) rnd_rho = numpy.random.random_integers(0, len(rhos)-1) job.n_hiddens = numpy.random.randint(80, 500) job.n_layers = numpy.random.random_integers(1, 2) job.learning_rate = learning_rates[id_lr] job.momentum = 10.**numpy.random.uniform(-1, -0) job.rmsprop = 1 job.rho = rhos[rnd_rho] job.validerror = 0.0 job.loss = 0.0 job.seed = 1938471 job.rbm_epochs = 0 job.epoch = 0 job.epoch_time = 0 job.use_nesterov = 1 job.trainerror = 0.0 job.features = "full.pca" job.max_col_norm = max_col_norms[rnd_maxcn] job.example_dropout = numpy.random.randint(60, 200) job.tag = "sigm_norm_const_fixed_pool2_norbm3" jobs.append(job) print job answer = raw_input("Submit %d jobs?[y/N] " % len(jobs)) if answer == "y": numpy.random.shuffle(jobs) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted %d jobs" % len(jobs) print "To run: jobdispatch --condor --mem=3G --gpu --env=THEANO_FLAGS='floatX=float32, device=gpu' --repeat_jobs=%d jobman sql -n 1 '%s' ." % (len(jobs), JOBDB)
def jobman_insert_random(n_jobs, table_name="emotiw_mlp_audio_tanh"): JOBDB = 'postgresql://[email protected]/gulcehrc_db?table=' + table_name EXPERIMENT_PATH = "experiment_cg.jobman_entrypoint" nlr = 50 learning_rates = numpy.logspace(numpy.log10(0.001), numpy.log10(0.3), nlr) jobs = [] for _ in range(n_jobs): job = DD() id_lr = numpy.random.random_integers(0, nlr - 1) job.n_hiddens = numpy.random.randint(100, 800) job.n_layers = numpy.random.randint(1, 4) job.learning_rate = learning_rates[id_lr] job.momentum = 10.**numpy.random.uniform(-1, -0) job.rmsprop = numpy.random.binomial(1, 0.5) job.validerror = 0.0 job.loss = 0.0 job.epoch = 0 job.epoch_time = 0 job.trainerror = 0.0 job.features = "full.pca" job.max_col_norm = 1.8456 job.example_dropout = numpy.random.randint(16, 200) job.rbm_learning_rate = 10.**numpy.random.uniform(-3, -0) job.rbm_epochs = 0 #numpy.random.randint(8, 100) job.tag = "tanh_norm_const" jobs.append(job) print job answer = raw_input("Submit %d jobs?[y/N] " % len(jobs)) if answer == "y": numpy.random.shuffle(jobs) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted %d jobs" % len(jobs) print "To run: jobdispatch --condor --mem=3G --gpu --env=THEANO_FLAGS='floatX=float32, device=gpu' --repeat_jobs=%d jobman sql -n 1 '%s' ." % ( len(jobs), JOBDB)
def jobman_insert_random(n_jobs, table_name="emotiw_mlp_audio_tanh"): JOBDB = 'postgresql://[email protected]/gulcehrc_db?table=' + table_name EXPERIMENT_PATH = "experiment_cg.jobman_entrypoint" nlr = 50 learning_rates = numpy.logspace(numpy.log10(0.001), numpy.log10(0.3), nlr) jobs = [] for _ in range(n_jobs): job = DD() id_lr = numpy.random.random_integers(0, nlr-1) job.n_hiddens = numpy.random.randint(100, 800) job.n_layers = numpy.random.randint(1, 4) job.learning_rate = learning_rates[id_lr] job.momentum = 10.**numpy.random.uniform(-1, -0) job.rmsprop = numpy.random.binomial(1, 0.5) job.validerror = 0.0 job.loss = 0.0 job.epoch = 0 job.epoch_time = 0 job.trainerror = 0.0 job.features = "full.pca" job.max_col_norm = 1.8456 job.example_dropout = numpy.random.randint(16, 200) job.rbm_learning_rate = 10.**numpy.random.uniform(-3, -0) job.rbm_epochs = 0 #numpy.random.randint(8, 100) job.tag = "tanh_norm_const" jobs.append(job) print job answer = raw_input("Submit %d jobs?[y/N] " % len(jobs)) if answer == "y": numpy.random.shuffle(jobs) db = jobman.sql.db(JOBDB) for job in jobs: job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) jobman.sql.insert_dict(job, db) print "inserted %d jobs" % len(jobs) print "To run: jobdispatch --condor --mem=3G --gpu --env=THEANO_FLAGS='floatX=float32, device=gpu' --repeat_jobs=%d jobman sql -n 1 '%s' ." % (len(jobs), JOBDB)