Esempio n. 1
0
        path = file_path.predicted_value
        outputer.setPredictedValueFilePath(path)

        path = file_path.output_dir
        outputer.setSummaryDirPath(path)

        #######################################################
        # each data settings
        #######################################################

        from tensorflow.examples.tutorials.mnist import input_data
        mnist = tf.keras.datasets.mnist
        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        kstd.echoBar()
        kstd.echoBlank()
        print("data attr")
        kstd.echoBlank()
        print(type(x_train))  # numpy.ndarray
        print(type(y_train))  # numpy.ndarray
        print(type(x_test))  # numpy.ndarray
        print(type(y_test))  # numpy.ndarray
        print(x_train.shape)  # (60000,28,28)
        print(y_train.shape)  # (60000,)
        print(x_test.shape)  # (10000,28,28)
        print(y_test.shape)  # (10000,)
        print(np.max(x_train))  # 255
        print(np.min(x_train))  # 0
        print(np.max(y_train))  # 9
        print(np.min(y_train))  # 0
        kstd.echoBlank()
Esempio n. 2
0
 def valCheck(self):
     kstd.echoBlank()
     print("image height : " + str(self.height) ) 
     print("image wigth  : " + str(self.wigth) ) 
Esempio n. 3
0
def echoProcessTo(str):
    kstd.echoBlank()
    print("process to " + str)