path = file_path.predicted_value outputer.setPredictedValueFilePath(path) path = file_path.output_dir outputer.setSummaryDirPath(path) ####################################################### # each data settings ####################################################### from tensorflow.examples.tutorials.mnist import input_data mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() kstd.echoBar() kstd.echoBlank() print("data attr") kstd.echoBlank() print(type(x_train)) # numpy.ndarray print(type(y_train)) # numpy.ndarray print(type(x_test)) # numpy.ndarray print(type(y_test)) # numpy.ndarray print(x_train.shape) # (60000,28,28) print(y_train.shape) # (60000,) print(x_test.shape) # (10000,28,28) print(y_test.shape) # (10000,) print(np.max(x_train)) # 255 print(np.min(x_train)) # 0 print(np.max(y_train)) # 9 print(np.min(y_train)) # 0 kstd.echoBlank()
def valCheck(self): kstd.echoBlank() print("image height : " + str(self.height) ) print("image wigth : " + str(self.wigth) )
def echoProcessTo(str): kstd.echoBlank() print("process to " + str)