Esempio n. 1
0
def populate_planetary_file():
    # Store formatted data in a local file - to be consumed by planetaryjs
    # We are storing the data in file as reading data from DB is very slow
    print_info("Storing pickled content to local file..")
    confirmed_records_qs = Record.objects.all().filter(
        stats_type='confirmed').values('latitude', 'longitude',
                                       'country_region', 'latest_stats_value')
    confirmed_records = list(confirmed_records_qs)
    ConfirmedPickledFile = open('datasets/Confirmed.pickle', 'ab')
    pickle.dump(confirmed_records, ConfirmedPickledFile)
    ConfirmedPickledFile.close()
    print_info("Storing pickled content to local file..Done")
Esempio n. 2
0
def populateWorldRecords(url, stats_type, countries_df):

    print_info(f"Fetching content for stats_type [{stats_type}]..")
    print_info(f"URL in use [{url}]")
    with requests.Session() as s:
        download = s.get(url)
    decoded_content = download.content.decode('utf-8')

    # local_file_name = f'datasets/{stats_type}.csv'
    # print_info(f"Writing dowloaded content to file[{local_file_name}]..")
    # with open(local_file_name, "w") as outfile:
    #     outfile.write(decoded_content)
    # print_info("Writing summary to local file..Done")

    rows_fetched = list(csv.reader(decoded_content.splitlines(),
                                   delimiter=','))
    print_info(f"Fetching content for stats_type [{stats_type}]..Done")

    # Handle header row
    header_row = rows_fetched.pop(0)  # Header is the first row.
    header_row.pop(0)  # Remove the value 'Province/State'
    header_row.pop(0)  # Remove the value 'Country/Region'
    header_row.pop(0)  # Remove the value 'Lat'
    header_row.pop(0)  # Remove the value 'Long'
    latest_stats_date = rectifyDateFormat(header_row[-1])
    # stats_dates_csv   =
    stats_dates_csv = rectifyDateFormat(dates_csv=(",".join(header_row)))

    print_info("Creating objects..")
    objects_list = []
    ignored_countries = [
        'Diamond Princess', 'West Bank and Gaza', 'Kosovo', 'MS Zaandam'
    ]
    for row in rows_fetched[:]:
        state_province = row.pop(0)
        country_region = row.pop(0)
        if (country_region in ignored_countries):
            country_alpha3 = '---'
        else:
            country_alpha3 = countries_df.loc[country_region, 'alpha3']
        latitude = row.pop(0)
        longitude = row.pop(0)
        stats_type = stats_type
        stats_value_csv = ",".join(row)
        latest_stats_value = row[-1] or 0
        # Create model Record instances
        obj = Record(
            state_province=state_province,
            country_region=country_region,
            country_alpha3=country_alpha3,
            latitude=latitude,
            longitude=longitude,
            stats_type=stats_type,
            latest_stats_date=latest_stats_date,
            latest_stats_value=latest_stats_value,
            stats_dates_csv=stats_dates_csv,
            stats_value_csv=stats_value_csv,
        )
        objects_list.append(obj)

    print_info("Creating objects..Done")
    print_info(f"Total objects created = {len(objects_list)}")

    print_info(f"Inserting records for stats_type[{stats_type}]..")
    Record.objects.bulk_create(objects_list)
    print_info(f"Inserting records for stats_type[{stats_type}]..Done")

    return decoded_content
Esempio n. 3
0
def truncate_records():

    print_info("Truncating [RECORD] table..")
    Record.objects.all().delete()
    print_info("Truncating [RECORD] table..Done")
Esempio n. 4
0
def write_to_file_summary_json(summary):
    print_info("Writing summary to local file[summary.json]..")
    with open("datasets/summary.json", "w") as outfile:
        json.dump(summary, outfile)
    print_info("Writing summary to local file[summary.json]..Done")
Esempio n. 5
0
def store_country_plotly_html():

    summary_json = json.loads(open('datasets/summary.json').read())
    geo_json_data = json.loads(
        open('datasets/GeoJsonWorldCountries.json').read())

    # Create a local simplified dict from topojson - like below
    # cntry = { "AFG": "Afghanistan", "ALB": "Albania", "DZA": "Algeria", "AND": "Andorra", "AGO": "Angola", "ATG": "Antigua", "ARG": "Argentina", "ARM": "Armenia", "AUS": "Australia", "AUT": "Austria", "AZE": "Azerbaijan", "BHS": "Bahamas", "BHR": "Bahrain", "BGD": "Bangladesh", "BRB": "Barbados", "BLR": "Belarus", "BEL": "Belgium", "BLZ": "Belize", "BEN": "Benin", "BTN": "Bhutan", "BOL": "Bolivia", "BIH": "Bosnia", "BWA": "Botswana", "BRA": "Brazil", "BRN": "Brunei", "BGR": "Bulgaria", "BFA": "Burkina", "BDI": "Burundi", "CPV": "CaboVerde", "KHM": "Cambodia", "CMR": "Cameroon", "CAN": "Canada", "CAF": "Central African Republic", "TCD": "Chad", "CHL": "Chile", "CHN": "China", "COL": "Colombia", "COM": "Comoros", "COG": "Congo", "COD": "Congo", "CRI": "Costa Rica", "CIV": "Côte d'Ivoire", "HRV": "Croatia", "CUB": "Cuba", "CYP": "Cyprus", "CZE": "Czechia", "DNK": "Denmark", "DJI": "Djibouti", "DMA": "Dominica", "DOM": "Dominican Rep", "ECU": "Ecuador", "EGY": "Egypt", "SLV": "El Salvador", "GNQ": "Guinea", "ERI": "Eritrea", "EST": "Estonia", "SWZ": "Eswatini", "ETH": "Ethiopia", "FJI": "Fiji", "FIN": "Finland", "FRA": "France", "GAB": "Gabon", "GMB": "Gambia", "GEO": "Georgia", "DEU": "Germany", "GHA": "Ghana", "GRC": "Greece", "GRD": "Grenada", "GTM": "Guatemala", "GIN": "Guinea", "GNB": "Guinea Bissau", "GUY": "Guyana", "HTI": "Haiti", "HND": "Honduras", "HUN": "Hungary", "ISL": "Iceland", "IND": "India", "IDN": "Indonesia", "IRN": "Iran", "IRQ": "Iraq", "IRL": "Ireland", "ISR": "Israel", "ITA": "Italy", "JAM": "Jamaica", "JPN": "Japan", "JOR": "Jordan", "KAZ": "Kazakhstan", "KEN": "Kenya", "KIR": "Kiribati", "PRK": "S Korea", "KOR": "N Korea", "KWT": "Kuwait", "KGZ": "Kyrgyzstan", "LAO": "Lao", "LVA": "Latvia", "LBN": "Lebanon", "LSO": "Lesotho", "LBR": "Liberia", "LBY": "Libya", "LIE": "Liechten stein", "LTU": "Lithuania", "LUX": "Luxembourg", "MDG": "Madagascar", "MWI": "Malawi", "MYS": "Malaysia", "MDV": "Maldives", "MLI": "Mali", "MLT": "Malta", "MHL": "Marshall Islands", "MRT": "Mauritania", "MUS": "Mauritius", "MEX": "Mexico", "FSM": "Micronesia", "MDA": "Moldova", "MCO": "Monaco", "MNG": "Mongolia", "MNE": "Montenegro", "MAR": "Morocco", "MOZ": "Mozambique", "MMR": "Myanmar", "NAM": "Namibia", "NRU": "Nauru", "NPL": "Nepal", "NLD": "Nether lands", "NZL": "New Zealand", "NIC": "Nicaragua", "NER": "Niger", "NGA": "Nigeria", "MKD": "North Macedonia", "NOR": "Norway", "OMN": "Oman", "PAK": "Pakistan", "PLW": "Palau", "PAN": "Panama", "PNG": "Papua New Guinea", "PRY": "Paraguay", "PER": "Peru", "PHL": "Philippines", "POL": "Poland", "PRT": "Portugal", "QAT": "Qatar", "ROU": "Romania", "RUS": "Russian", "RWA": "Rwanda", "KNA": "Saint Kitts and Nevis", "LCA": "Saint Lucia", "VCT": "Saint Vincent and the Grenadines", "WSM": "Samoa", "SMR": "San Marino", "STP": "Sao Tome and Principe", "SAU": "Saudi Arabia", "SEN": "Senegal", "SRB": "Serbia", "SYC": "Seychelles", "SLE": "Sierra Leone", "SGP": "Singapore", "SVK": "Slovakia", "SVN": "Slovenia", "SLB": "Solomon", "SOM": "Somalia", "ZAF": "South Africa", "SSD": "South Sudan", "ESP": "Spain", "LKA": "Sri Lanka", "SDN": "Sudan", "SUR": "Suriname", "SWE": "Sweden", "CHE": "Switzer land", "SYR": "Syria", "TJK": "Tajikistan", "TZA": "Tanzania", "THA": "Thailand", "TLS": "Timor Leste", "TGO": "Togo", "TON": "Tonga", "TTO": "Trinidad and Tobago", "TUN": "Tunisia", "TUR": "Turkey", "TKM": "Turkmeni stan", "TUV": "Tuvalu", "UGA": "Uganda", "UKR": "Ukraine", "ARE": "UAE", "GBR": "United Kingdom", "USA": "USA", "URY": "Uruguay", "UZB": "Uzbekistan", "VUT": "Vanuatu", "VEN": "Venezuela", "VNM": "Viet Nam", "YEM": "Yemen", "ZMB": "Zambia", "ZWE": "Zimbabwe" }
    cntry = {}
    for temp in geo_json_data['features']:
        cntry[temp['id']] = temp['properties']['name']
    for country_alpha3 in cntry:
        if country_alpha3 not in summary_json['countriesSorted_Confirmed']:
            pass
        trend = {'confirmed': {}, 'recovered': {}, 'deaths': {}}
        print_info(f"Fetching records from DB for country[{country_alpha3}]..")
        records = Record.objects.filter(
            country_alpha3=country_alpha3).values_list('stats_type',
                                                       'stats_dates_csv',
                                                       'stats_value_csv')
        for record in records:
            stats_type = record[0]
            dates_list = record[1].split(",")
            values_list = record[2].split(",")
            for index, date_str in enumerate(dates_list):
                value = values_list[index]
                # date_obj = str(datetime.datetime.strptime(date_str, "%Y-%m-%d"))
                date_obj = str(datetime.strptime(date_str, "%Y-%m-%d"))
                if date_obj in trend[stats_type]:
                    trend[stats_type][date_obj] += int(value)
                else:
                    trend[stats_type][date_obj] = int(value)
        print_info(
            f"Fetching records from DB for country[{country_alpha3}]..Done")

        confirmed_dates_list = list(trend['confirmed'].keys())
        confirmed_dates_list.sort()
        confirmed_values_list = list(trend['confirmed'].values())
        confirmed_values_list.sort()
        recovered_dates_list = list(trend['recovered'].keys())
        recovered_dates_list.sort()
        recovered_values_list = list(trend['recovered'].values())
        recovered_values_list.sort()
        deaths_dates_list = list(trend['deaths'].keys())
        deaths_dates_list.sort()
        deaths_values_list = list(trend['deaths'].values())
        deaths_values_list.sort()

        print_info('Generating the plot..')

        data = {
            "data": [
                go.Scatter(
                    x=confirmed_dates_list,
                    y=confirmed_values_list,
                    mode='lines+markers',
                    name='Confirmed',
                    line=dict(color='#3366CC'),
                    marker=dict(
                        color='#003366',
                        size=4,
                        # line=dict(
                        #     color='MediumPurple',
                        #     width=2
                        # )
                    ),
                ),
                go.Scatter(
                    x=recovered_dates_list,
                    y=recovered_values_list,
                    mode='lines+markers',
                    name='Recovered',
                    line=dict(color='green'),
                    marker=dict(color='darkgreen', size=4),
                ),
                go.Scatter(
                    x=deaths_dates_list,
                    y=deaths_values_list,
                    mode='lines+markers',
                    name='Deaths',
                    line=dict(color='tomato'),
                    marker=dict(
                        color='red',
                        size=4,
                    ),
                )
            ],
            "layout":
            go.Layout(
                margin={
                    'l': 0,
                    'r': 0,
                    't': 0,
                    'b': 0
                },
                paper_bgcolor='#ffffff',
                plot_bgcolor='rgba(0,0,0,0)',
                height=350,
                # title="Trend",
                autosize=True,
                # xaxis_title='Time',
                # yaxis_title='Count'
                legend_orientation="h",
                xaxis1={
                    "gridcolor": "rgba(209, 187, 149, .5)",
                    "zerolinecolor": "rgba(209, 187, 149, .8)"
                },
                yaxis1={
                    "gridcolor": "rgba(209, 187, 149, .5)",
                    "zerolinecolor": "rgba(209, 187, 149, .8)"
                },
            )
        }
        config = {'displayModeBar': False}

        plotly_div = plotly.offline.plot(data,
                                         include_plotlyjs=True,
                                         config=config,
                                         output_type='div')
        print_info('Generating the plot..Done')

        local_file_name = f"datasets/html/countries/{country_alpha3}/plotly.html"
        print_info(
            f"Writing generated plotly HTML in local file[{local_file_name}..")
        Path(f"datasets/html/countries/{country_alpha3}").mkdir(parents=True,
                                                                exist_ok=True)
        try:
            with open(local_file_name, "w") as outfile:
                outfile.write(plotly_div)
        except Exception as e:
            print_error(
                f"Writing generated plotly HTML in local file[{local_file_name}]..Failed"
            )
Esempio n. 6
0
def store_country_stats_table_html():

    print_info("Generating stats table..")
    summary_json = json.loads(open('datasets/summary.json').read())
    geo_json_data = json.loads(
        open('datasets/GeoJsonWorldCountries.json').read())

    # Create a local simplified dict from topojson - like below
    # cntry = { "AFG": "Afghanistan", "ALB": "Albania", "DZA": "Algeria", ..}
    cntry = {}
    for temp in geo_json_data['features']:
        cntry[temp['id']] = temp['properties']['name']
    for country_alpha3 in cntry:
        if country_alpha3 not in summary_json['countriesSorted_Confirmed']:
            pass
        print_info(f"Generating stats HTML for [{country_alpha3}]..")
        records_list = []
        records = Record.objects.filter(
            country_alpha3=country_alpha3).values_list('state_province',
                                                       'country_region',
                                                       'stats_type',
                                                       'latest_stats_date',
                                                       'latest_stats_value')
        records_dict = {}
        for record in records:
            state_province = record[0] or 'No data'
            country_region = record[1]
            stats_type = record[2]
            latest_stats_date = record[3]
            latest_stats_value = record[4]
            if state_province not in records_dict:
                records_dict[state_province] = {}
            if stats_type not in records_dict[state_province]:
                records_dict[state_province][stats_type] = {}
            records_dict[state_province][stats_type][
                'latest_stats_date'] = latest_stats_date
            records_dict[state_province][stats_type][
                'latest_stats_value'] = latest_stats_value

        table_rows_html = ''
        for state in records_dict:
            try:
                confirmed = records_dict[state]['confirmed'][
                    'latest_stats_value']
            except KeyError:
                confirmed = '-'

            try:
                recovered = records_dict[state]['recovered'][
                    'latest_stats_value']
            except KeyError:
                recovered = '-'

            try:
                deaths = records_dict[state]['deaths']['latest_stats_value']
            except KeyError:
                deaths = '-'

            table_rows_html += f"<tr>"
            table_rows_html += f"<td>{state}</td>"
            table_rows_html += f"<td class='text-right text-warning'>{confirmed}</td>"
            table_rows_html += f"<td class='text-right text-success'>{recovered}</td>"
            table_rows_html += f"<td class='text-right text-danger'>{deaths}</td>"
            table_rows_html += f"</tr>"

        table_html = f'\
            <table id="table-country-records" class="table table-sm">\
                <thead>\
                <tr>\
                    <td>State</td>\
                    <td class="text-right text-warning">Confirmed</td>\
                    <td class="text-right text-success">Recovered</td>\
                    <td class="text-right text-danger">Deaths</td>\
                </tr>\
                </thead>\
                <tbody>{table_rows_html}</tbody>\
            </table>'

        print_info(f"Generating stats HTML for {country_alpha3}..Done")

        local_file_name = f"datasets/html/countries/{country_alpha3}/stats.html"
        print_info(
            f"Writing generated table HTML in local file[{local_file_name}..")
        Path(f"datasets/html/countries/{country_alpha3}").mkdir(parents=True,
                                                                exist_ok=True)
        with open(local_file_name, "w") as outfile:
            outfile.write(table_html)
        print_info(
            f"Writing generated table HTML in local file[{local_file_name}]..Done"
        )
Esempio n. 7
0
def store_world_stats_table_html():

    print_info("Generating HTML for world stats table..")

    summary_json = json.loads(open('datasets/summary.json').read())
    geo_json_data = json.loads(
        open('datasets/GeoJsonWorldCountries.json').read())

    # Create a local simplified dict from topojson - like below
    # cntry = { "AFG": "Afghanistan", "ALB": "Albania", "DZA": "Algeria", "AND": "Andorra", "AGO": "Angola", "ATG": "Antigua", "ARG": "Argentina", "ARM": "Armenia", "AUS": "Australia", "AUT": "Austria", "AZE": "Azerbaijan", "BHS": "Bahamas", "BHR": "Bahrain", "BGD": "Bangladesh", "BRB": "Barbados", "BLR": "Belarus", "BEL": "Belgium", "BLZ": "Belize", "BEN": "Benin", "BTN": "Bhutan", "BOL": "Bolivia", "BIH": "Bosnia", "BWA": "Botswana", "BRA": "Brazil", "BRN": "Brunei", "BGR": "Bulgaria", "BFA": "Burkina", "BDI": "Burundi", "CPV": "CaboVerde", "KHM": "Cambodia", "CMR": "Cameroon", "CAN": "Canada", "CAF": "Central African Republic", "TCD": "Chad", "CHL": "Chile", "CHN": "China", "COL": "Colombia", "COM": "Comoros", "COG": "Congo", "COD": "Congo", "CRI": "Costa Rica", "CIV": "Côte d'Ivoire", "HRV": "Croatia", "CUB": "Cuba", "CYP": "Cyprus", "CZE": "Czechia", "DNK": "Denmark", "DJI": "Djibouti", "DMA": "Dominica", "DOM": "Dominican Rep", "ECU": "Ecuador", "EGY": "Egypt", "SLV": "El Salvador", "GNQ": "Guinea", "ERI": "Eritrea", "EST": "Estonia", "SWZ": "Eswatini", "ETH": "Ethiopia", "FJI": "Fiji", "FIN": "Finland", "FRA": "France", "GAB": "Gabon", "GMB": "Gambia", "GEO": "Georgia", "DEU": "Germany", "GHA": "Ghana", "GRC": "Greece", "GRD": "Grenada", "GTM": "Guatemala", "GIN": "Guinea", "GNB": "Guinea Bissau", "GUY": "Guyana", "HTI": "Haiti", "HND": "Honduras", "HUN": "Hungary", "ISL": "Iceland", "IND": "India", "IDN": "Indonesia", "IRN": "Iran", "IRQ": "Iraq", "IRL": "Ireland", "ISR": "Israel", "ITA": "Italy", "JAM": "Jamaica", "JPN": "Japan", "JOR": "Jordan", "KAZ": "Kazakhstan", "KEN": "Kenya", "KIR": "Kiribati", "PRK": "S Korea", "KOR": "N Korea", "KWT": "Kuwait", "KGZ": "Kyrgyzstan", "LAO": "Lao", "LVA": "Latvia", "LBN": "Lebanon", "LSO": "Lesotho", "LBR": "Liberia", "LBY": "Libya", "LIE": "Liechten stein", "LTU": "Lithuania", "LUX": "Luxembourg", "MDG": "Madagascar", "MWI": "Malawi", "MYS": "Malaysia", "MDV": "Maldives", "MLI": "Mali", "MLT": "Malta", "MHL": "Marshall Islands", "MRT": "Mauritania", "MUS": "Mauritius", "MEX": "Mexico", "FSM": "Micronesia", "MDA": "Moldova", "MCO": "Monaco", "MNG": "Mongolia", "MNE": "Montenegro", "MAR": "Morocco", "MOZ": "Mozambique", "MMR": "Myanmar", "NAM": "Namibia", "NRU": "Nauru", "NPL": "Nepal", "NLD": "Nether lands", "NZL": "New Zealand", "NIC": "Nicaragua", "NER": "Niger", "NGA": "Nigeria", "MKD": "North Macedonia", "NOR": "Norway", "OMN": "Oman", "PAK": "Pakistan", "PLW": "Palau", "PAN": "Panama", "PNG": "Papua New Guinea", "PRY": "Paraguay", "PER": "Peru", "PHL": "Philippines", "POL": "Poland", "PRT": "Portugal", "QAT": "Qatar", "ROU": "Romania", "RUS": "Russian", "RWA": "Rwanda", "KNA": "Saint Kitts and Nevis", "LCA": "Saint Lucia", "VCT": "Saint Vincent and the Grenadines", "WSM": "Samoa", "SMR": "San Marino", "STP": "Sao Tome and Principe", "SAU": "Saudi Arabia", "SEN": "Senegal", "SRB": "Serbia", "SYC": "Seychelles", "SLE": "Sierra Leone", "SGP": "Singapore", "SVK": "Slovakia", "SVN": "Slovenia", "SLB": "Solomon", "SOM": "Somalia", "ZAF": "South Africa", "SSD": "South Sudan", "ESP": "Spain", "LKA": "Sri Lanka", "SDN": "Sudan", "SUR": "Suriname", "SWE": "Sweden", "CHE": "Switzer land", "SYR": "Syria", "TJK": "Tajikistan", "TZA": "Tanzania", "THA": "Thailand", "TLS": "Timor Leste", "TGO": "Togo", "TON": "Tonga", "TTO": "Trinidad and Tobago", "TUN": "Tunisia", "TUR": "Turkey", "TKM": "Turkmeni stan", "TUV": "Tuvalu", "UGA": "Uganda", "UKR": "Ukraine", "ARE": "UAE", "GBR": "United Kingdom", "USA": "USA", "URY": "Uruguay", "UZB": "Uzbekistan", "VUT": "Vanuatu", "VEN": "Venezuela", "VNM": "Viet Nam", "YEM": "Yemen", "ZMB": "Zambia", "ZWE": "Zimbabwe" }
    cntry = {}
    for temp in geo_json_data['features']:
        cntry[temp['id']] = temp['properties']['name']
    html = ''
    for alpha3 in summary_json['countriesSorted_Confirmed']:
        if alpha3 == '---':
            continue
        if alpha3 in cntry:
            country = cntry[alpha3]
        else:
            country = alpha3

        confirmed = summary_json['countries'][alpha3]['confirmed']
        recovered = summary_json['countries'][alpha3]['recovered']
        deaths = summary_json['countries'][alpha3]['deaths']

        country_href = f"<a href='/country/{alpha3}'>{country}</a>"
        html += f"<tr>"
        html += f"<td>{country_href}</td>"
        html += f"<td class='text-right text-warning'>{confirmed}</td>"
        html += f"<td class='text-right text-success'>{recovered}</td>"
        html += f"<td class='text-right text-danger'>{deaths}</td>"
        html += f"</tr>"
        html += f"\n"

    table_html = f'\
        <table id="table-count" class="table table-sm" style="width: 100%;max-height:180px;overflow:auto;">\
            <thead>\
            <tr>\
                <td></td>\
                <td class="text-right text-warning">Confirmed</td>\
                <td class="text-right text-success">Recovered</td>\
                <td class="text-right text-danger">Deaths</td>\
            </tr>\
            </thead>\
            <tbody>{html}</tbody>\
        </table>'

    print_info("Generating HTML for world stats table..")

    print_info(
        "Writing generated HTML in local file[datasets/html/world/world_stats_table.html].."
    )

    local_file_name = f'datasets/html/world/world_stats_table.html'
    Path("datasets/html/world").mkdir(parents=True, exist_ok=True)
    with open(local_file_name, "w") as outfile:
        outfile.write(table_html)
    print_info(
        "Writing generated HTML in local file[datasets/html/world/world_stats_table.html]..Done"
    )

    return table_html
Esempio n. 8
0
def store_world_choropleth_map_html():

    print_info("Generating HTML for world choropleth map..")

    summary_json = json.loads(open('datasets/summary.json').read())
    geo_json_data = json.loads(
        open('datasets/GeoJsonWorldCountries.json').read())

    # We are directly manipulating geojson to add in confirmed/recovered/deaths
    # We need to manipulate the geojson as it is the one which choropleth consumes
    # Must be a better approach available - TBD
    # Manipulating geo-json data..
    for obj in geo_json_data['features']:
        country_alpha2 = obj['id']  # AFG
        try:
            obj['properties']['confirmed'] = summary_json['countries'][
                country_alpha2]['confirmed']
            obj['properties']['recovered'] = summary_json['countries'][
                country_alpha2]['recovered']
            obj['properties']['deaths'] = summary_json['countries'][
                country_alpha2]['deaths']
        except:
            # These are the countries which are present in geojson but not in summary
            # which implies - these are the countries wherein covid has not been reported
            # No further action is needed
            pass
    # Manipulating geo-json data..Done

    countries_df = get_country_dataframes()

    beep = "Dummy|0"
    for country in summary_json['countries']:
        deaths = 0
        confirmed = 0
        recovered = 0
        if ('deaths' in summary_json['countries'][country]):
            deaths = summary_json['countries'][country]['deaths']
        if ('confirmed' in summary_json['countries'][country]):
            confirmed = summary_json['countries'][country]['confirmed']
        if ('recovered' in summary_json['countries'][country]):
            recovered = summary_json['countries'][country]['recovered']
        try:
            beep = beep + "\n" + "{}|{}".format(
                countries_df.loc[country, 'alpha3'], confirmed)
        except:
            beep = beep + "\n" + "{}|{}".format(country, confirmed)

    TESTDATA = StringIO(beep)
    unemployment_df = pd.read_csv(TESTDATA,
                                  sep="|",
                                  names=["State", "Unemployment"])

    linearrrr = cm.LinearColormap(['#fac4c4', '#f8302e'],
                                  vmin=unemployment_df.Unemployment.min(),
                                  vmax=unemployment_df.Unemployment.max())

    unemployment_dict = unemployment_df.set_index('State')['Unemployment']
    color_dict = {
        key: linearrrr(unemployment_dict[key])
        for key in unemployment_dict.keys()
    }

    m = folium.Map()

    folium.GeoJson(
        geo_json_data,
        style_function=lambda feature: {
            'fillColor':
            color_dict[feature['id']]
            if feature['id'] in color_dict.keys() else '#262626',
            'color':
            'white',
            'weight':
            0.3,
            # 'dashArray': '5, 5',
            'fillOpacity':
            0.9,
        },
        tooltip=folium.GeoJsonTooltip(
            fields=['name', 'confirmed', 'recovered', 'deaths'],
            aliases=['Country', 'Confirmed', 'Recovered', 'Deaths'],
            localize=True)).add_to(m)
    choropleth_map_html = m.get_root().render()
    print_info("Generating HTML for world choropleth map..Done")

    print_info(
        "Writing generated HTML in local file[datasets/html/world_choropleth.html].."
    )
    local_file_name = f'datasets/html/world/world_choropleth.html'
    Path("datasets/html/world").mkdir(parents=True, exist_ok=True)
    with open(local_file_name, "w") as outfile:
        outfile.write(choropleth_map_html)
    print_info(
        "Writing generated HTML in local file[datasets/html/world/world_choropleth.html]..Done"
    )
Esempio n. 9
0
def populate_summary_tbl_n_file():

    print_info("Computing summary from records fetched..")
    summary = {}
    summary['utc_dt'] = str(datetime.now(timezone.utc))
    summary['totals'] = findSumAcrossAllCountries()['totals']
    summary['countries'] = findSumAcrossEachCountry()['countries']
    summary['trend_deaths'] = findTrend(stats_type='deaths')
    summary['trend_confirmed'] = findTrend(stats_type='confirmed')
    summary['trend_recovered'] = findTrend(stats_type='recovered')
    summary['countriesSorted_Deaths'] = findCountriesSorted(
        stats_type='deaths')
    summary['countriesSorted_Recovered'] = findCountriesSorted(
        stats_type='recovered')
    summary['countriesSorted_Confirmed'] = findCountriesSorted(
        stats_type='confirmed')
    print_info("Computing summary from records fetched..Done")

    # Truncate Summary table
    print_info("Truncating summary table..")
    Summary.objects.all().delete()
    print_info("Truncating summary table..Done")

    # Update Summary table
    print_info("Updating summary table..")
    obj = Summary(json_string=json.dumps(summary))
    obj.save()
    print_info("Updating summary table..Done")

    write_to_file_summary_json(summary=summary)
Esempio n. 10
0
def populate_records_india(
        url='https://api.rootnet.in/covid19-in/stats/daily'):

    print_info("Handling India records..")
    Record.objects.filter(country_region='India').delete()

    # Globals
    states_lat_long = {
        "India": {
            "lat": 20.5937,
            "long": 78.9629
        },
        "Andhra Pradesh": {
            "lat": 15.9129,
            "long": 79.7400
        },
        "Assam": {
            "lat": 26.244156,
            "long": 92.537842
        },
        "Bihar": {
            "lat": 25.0961,
            "long": 85.3131
        },
        "Chandigarh": {
            "lat": 30.7333,
            "long": 76.7794
        },
        "Chhattisgarh": {
            "lat": 21.295132,
            "long": 81.828232
        },
        "Delhi": {
            "lat": 28.7041,
            "long": 77.1025
        },
        "Gujarat": {
            "lat": 22.309425,
            "long": 72.136230
        },
        "Haryana": {
            "lat": 29.238478,
            "long": 76.431885
        },
        "Himachal Pradesh": {
            "lat": 32.084206,
            "long": 77.571167
        },
        "Jammu and Kashmir": {
            "lat": 33.7782,
            "long": 76.5762
        },
        "Karnataka": {
            "lat": 15.317277,
            "long": 75.713890
        },
        "Kerala": {
            "lat": 10.850516,
            "long": 76.271080
        },
        "Ladakh": {
            "lat": 34.152588,
            "long": 77.577049
        },
        "Madhya Pradesh": {
            "lat": 23.473324,
            "long": 77.947998
        },
        "Maharashtra": {
            "lat": 19.601194,
            "long": 75.552979
        },
        "Odisha": {
            "lat": 20.940920,
            "long": 84.803467
        },
        "Puducherry": {
            "lat": 11.9416,
            "long": 79.8083
        },
        "Punjab": {
            "lat": 31.1471,
            "long": 75.3412
        },
        "Rajasthan": {
            "lat": 27.391277,
            "long": 73.432617
        },
        "Tamil Nadu": {
            "lat": 11.127123,
            "long": 78.656891
        },
        "Telangana": {
            "lat": 17.123184,
            "long": 79.208824
        },
        "Telengana": {
            "lat": 17.123184,
            "long": 79.208824
        },
        "Tripura": {
            "lat": 23.745127,
            "long": 91.746826
        },
        "Uttar Pradesh": {
            "lat": 28.207609,
            "long": 79.826660
        },
        "Uttarakhand": {
            "lat": 30.0668,
            "long": 79.0193
        },
        "West Bengal": {
            "lat": 22.978624,
            "long": 87.747803
        }
    }

    state_wise_stats = {}
    # Fetch JSON data from url
    r = requests.get(url)
    r_json = r.json()
    for data in r_json['data']:
        date = data['day']  # 2020-03-10
        for regional in data['regional']:
            state = regional['loc']
            if (state in state_wise_stats.keys()):
                pass
            else:
                state_wise_stats[state] = {}
                state_wise_stats[state]['confirmed_csv'] = ''
                state_wise_stats[state]['recovered_csv'] = ''
                state_wise_stats[state]['deaths_csv'] = ''
                state_wise_stats[state]['dates_csv'] = ''

            # Handle the case where the state is not present in the states_lat_long dict
            if (state in states_lat_long.keys()):
                state_wise_stats[state]['lat'] = states_lat_long[state]['lat']
                state_wise_stats[state]['long'] = states_lat_long[state][
                    'long']
            else:
                state_wise_stats[state]['lat'] = states_lat_long['India'][
                    'lat']
                state_wise_stats[state]['long'] = states_lat_long['India'][
                    'long']

            state_wise_stats[state]['recovered_csv'] = state_wise_stats[state][
                'recovered_csv'] + str(regional['discharged']) + ","
            state_wise_stats[state]['confirmed_csv'] = state_wise_stats[state][
                'confirmed_csv'] + str(regional['confirmedCasesIndian'] +
                                       regional['confirmedCasesForeign']) + ","
            state_wise_stats[state]['deaths_csv'] = state_wise_stats[state][
                'deaths_csv'] + str(regional['deaths']) + ","
            state_wise_stats[state]['dates_csv'] = state_wise_stats[state][
                'dates_csv'] + str(date) + ","
            state_wise_stats[state]['confirmed_latest'] = regional[
                'confirmedCasesIndian'] + regional['confirmedCasesForeign']
            state_wise_stats[state]['recovered_latest'] = regional[
                'discharged']
            state_wise_stats[state]['deaths_latest'] = regional['deaths']
            state_wise_stats[state]['date_latest'] = str(date)
    # At this time, we have collected all the data into the state_wise_stats dict
    # Next step - Load data onto database using bulk insert
    # Bulk insert requires array of objects to be created
    objects_list = []
    for state in state_wise_stats:
        # For each state, we create 3 objects - 1.Confirmed 2.Recovered 3.Deaths
        obj = Record(
            state_province=state,
            country_region='India',
            country_alpha3='IND',
            latitude=state_wise_stats[state]['lat'],
            longitude=state_wise_stats[state]['long'],
            stats_type='confirmed',
            latest_stats_date=state_wise_stats[state]['date_latest'],
            latest_stats_value=state_wise_stats[state]['confirmed_latest'],
            stats_dates_csv=state_wise_stats[state]['dates_csv'].rstrip(','),
            stats_value_csv=state_wise_stats[state]['confirmed_csv'].rstrip(
                ','),
        )
        objects_list.append(obj)
        obj = Record(
            state_province=state,
            country_region='India',
            country_alpha3='IND',
            latitude=state_wise_stats[state]['lat'],
            longitude=state_wise_stats[state]['long'],
            stats_type='deaths',
            latest_stats_date=state_wise_stats[state]['date_latest'],
            latest_stats_value=state_wise_stats[state]['deaths_latest'],
            stats_dates_csv=state_wise_stats[state]['dates_csv'].rstrip(','),
            stats_value_csv=state_wise_stats[state]['deaths_csv'].rstrip(','),
        )
        objects_list.append(obj)
        obj = Record(
            latitude=state_wise_stats[state]['lat'],
            longitude=state_wise_stats[state]['long'],
            stats_type='recovered',
            state_province=state,
            country_region='India',
            country_alpha3='IND',
            stats_dates_csv=state_wise_stats[state]['dates_csv'].rstrip(','),
            stats_value_csv=state_wise_stats[state]['recovered_csv'].rstrip(
                ','),
            latest_stats_date=state_wise_stats[state]['date_latest'],
            latest_stats_value=state_wise_stats[state]['recovered_latest'])
        objects_list.append(obj)

    print_info("Inserting INDIA records..")
    Record.objects.bulk_create(objects_list)
    print_info("Inserting INDIA records..Done")
    print_info("Handling India records..Done")
Esempio n. 11
0
def coronafeed(request):
    print_info("Reading summary json from [datasets/summary.json]..")
    summary_json = json.loads(open('datasets/summary.json').read())
    print_info("Reading summary json from [datasets/summary.json]..Done")
    return JsonResponse(summary_json)
Esempio n. 12
0
def home(request):

    print_info("Processing starts..")

    print_info("Reading pickled data..")
    ConfirmedPickledFile = open('datasets/Confirmed.pickle', 'rb')
    confirmed_records = pickle.load(ConfirmedPickledFile)
    print_info("Reading pickled data..Done")

    print_info("Fetching summary..")
    summary_json = json.loads(open('datasets/summary.json').read())
    print_info("Fetching summary..Done")

    print_info("Fetching geo-json data..")
    geo_json_data = json.loads(
        open('datasets/GeoJsonWorldCountries.json').read())
    print_info("Fetching geo-json data..Done")

    print_info("Fetching HTML for counts table..")
    with open('datasets/html/world/world_stats_table.html') as file:
        table_html = file.read()
    print_info("Fetching HTML for counts table..Done")

    print_info(
        "Fetching choropleth HTML from [datasets/html/world_choropleth.html].."
    )
    with open('datasets/html/world/world_choropleth.html') as file:
        choropleth_map_html = file.read()
    print_info(
        "Fetching choropleth HTML from [datasets/html/world_choropleth.html]..Done"
    )

    print_info("Setting context variable..")
    context = {
        "data": confirmed_records,  # used for sparks
        "summary": summary_json,  # used for pings
        'map_html': choropleth_map_html,
        'table_html': table_html
    }
    print_info("Setting context variable..Done")
    return render(request, "index.html", context)
Esempio n. 13
0
def country_home(request, name='default'):

    print_info("Fetching geo-json data..")
    geo_json_data = json.loads(
        open('datasets/GeoJsonWorldCountries.json').read())
    print_info("Fetching geo-json data..Done")

    # Create a local simplified dict from topojson - like below
    # cntry = { "AFG": "Afghanistan", "ALB": "Albania", "DZA": "Algeria", "AND": "Andorra", "AGO": "Angola", "ATG": "Antigua", "ARG": "Argentina", "ARM": "Armenia", "AUS": "Australia", "AUT": "Austria", "AZE": "Azerbaijan", "BHS": "Bahamas", "BHR": "Bahrain", "BGD": "Bangladesh", "BRB": "Barbados", "BLR": "Belarus", "BEL": "Belgium", "BLZ": "Belize", "BEN": "Benin", "BTN": "Bhutan", "BOL": "Bolivia", "BIH": "Bosnia", "BWA": "Botswana", "BRA": "Brazil", "BRN": "Brunei", "BGR": "Bulgaria", "BFA": "Burkina", "BDI": "Burundi", "CPV": "CaboVerde", "KHM": "Cambodia", "CMR": "Cameroon", "CAN": "Canada", "CAF": "Central African Republic", "TCD": "Chad", "CHL": "Chile", "CHN": "China", "COL": "Colombia", "COM": "Comoros", "COG": "Congo", "COD": "Congo", "CRI": "Costa Rica", "CIV": "Côte d'Ivoire", "HRV": "Croatia", "CUB": "Cuba", "CYP": "Cyprus", "CZE": "Czechia", "DNK": "Denmark", "DJI": "Djibouti", "DMA": "Dominica", "DOM": "Dominican Rep", "ECU": "Ecuador", "EGY": "Egypt", "SLV": "El Salvador", "GNQ": "Guinea", "ERI": "Eritrea", "EST": "Estonia", "SWZ": "Eswatini", "ETH": "Ethiopia", "FJI": "Fiji", "FIN": "Finland", "FRA": "France", "GAB": "Gabon", "GMB": "Gambia", "GEO": "Georgia", "DEU": "Germany", "GHA": "Ghana", "GRC": "Greece", "GRD": "Grenada", "GTM": "Guatemala", "GIN": "Guinea", "GNB": "Guinea Bissau", "GUY": "Guyana", "HTI": "Haiti", "HND": "Honduras", "HUN": "Hungary", "ISL": "Iceland", "IND": "India", "IDN": "Indonesia", "IRN": "Iran", "IRQ": "Iraq", "IRL": "Ireland", "ISR": "Israel", "ITA": "Italy", "JAM": "Jamaica", "JPN": "Japan", "JOR": "Jordan", "KAZ": "Kazakhstan", "KEN": "Kenya", "KIR": "Kiribati", "PRK": "S Korea", "KOR": "N Korea", "KWT": "Kuwait", "KGZ": "Kyrgyzstan", "LAO": "Lao", "LVA": "Latvia", "LBN": "Lebanon", "LSO": "Lesotho", "LBR": "Liberia", "LBY": "Libya", "LIE": "Liechten stein", "LTU": "Lithuania", "LUX": "Luxembourg", "MDG": "Madagascar", "MWI": "Malawi", "MYS": "Malaysia", "MDV": "Maldives", "MLI": "Mali", "MLT": "Malta", "MHL": "Marshall Islands", "MRT": "Mauritania", "MUS": "Mauritius", "MEX": "Mexico", "FSM": "Micronesia", "MDA": "Moldova", "MCO": "Monaco", "MNG": "Mongolia", "MNE": "Montenegro", "MAR": "Morocco", "MOZ": "Mozambique", "MMR": "Myanmar", "NAM": "Namibia", "NRU": "Nauru", "NPL": "Nepal", "NLD": "Nether lands", "NZL": "New Zealand", "NIC": "Nicaragua", "NER": "Niger", "NGA": "Nigeria", "MKD": "North Macedonia", "NOR": "Norway", "OMN": "Oman", "PAK": "Pakistan", "PLW": "Palau", "PAN": "Panama", "PNG": "Papua New Guinea", "PRY": "Paraguay", "PER": "Peru", "PHL": "Philippines", "POL": "Poland", "PRT": "Portugal", "QAT": "Qatar", "ROU": "Romania", "RUS": "Russian", "RWA": "Rwanda", "KNA": "Saint Kitts and Nevis", "LCA": "Saint Lucia", "VCT": "Saint Vincent and the Grenadines", "WSM": "Samoa", "SMR": "San Marino", "STP": "Sao Tome and Principe", "SAU": "Saudi Arabia", "SEN": "Senegal", "SRB": "Serbia", "SYC": "Seychelles", "SLE": "Sierra Leone", "SGP": "Singapore", "SVK": "Slovakia", "SVN": "Slovenia", "SLB": "Solomon", "SOM": "Somalia", "ZAF": "South Africa", "SSD": "South Sudan", "ESP": "Spain", "LKA": "Sri Lanka", "SDN": "Sudan", "SUR": "Suriname", "SWE": "Sweden", "CHE": "Switzer land", "SYR": "Syria", "TJK": "Tajikistan", "TZA": "Tanzania", "THA": "Thailand", "TLS": "Timor Leste", "TGO": "Togo", "TON": "Tonga", "TTO": "Trinidad and Tobago", "TUN": "Tunisia", "TUR": "Turkey", "TKM": "Turkmeni stan", "TUV": "Tuvalu", "UGA": "Uganda", "UKR": "Ukraine", "ARE": "UAE", "GBR": "United Kingdom", "USA": "USA", "URY": "Uruguay", "UZB": "Uzbekistan", "VUT": "Vanuatu", "VEN": "Venezuela", "VNM": "Viet Nam", "YEM": "Yemen", "ZMB": "Zambia", "ZWE": "Zimbabwe" }
    cntry = {}
    for temp in geo_json_data['features']:
        cntry[temp['id']] = temp['properties']['name']

    print_info("Fetching graph html..")
    with open(f'datasets/html/countries/{name}/plotly.html') as file:
        div_html = file.read()
    print_info("Fetching graph html..Done")

    print_info("Fetching states table html from local file..")
    # country_table_html = fetch_country_records(country_alpha3=name)
    with open(f'datasets/html/countries/{name}/stats.html') as file:
        country_table_html = file.read()
    print_info("Fetching states table html from local file..Done")

    context = {
        'country': cntry[name],
        'country_table_html': country_table_html,
        'div_html': div_html
    }
    return render(request, "country/country_home.html", context)