Esempio n. 1
0
    {
        'mode': 'Perlin',
        'specs': {
            'size': 4
        }
    },
    {
        'mode': 'Perlin_uniform',
        'specs': {
            'size': 4
        }
    },
]

simulation = 'sequence_EI_networks'
params = protocol.get_parameters(simulation).as_dict()
params.update({'landscape': landscapes[-1]})

gids, ts = protocol.get_or_simulate(simulation, params)

nrow = ncol = params['nrowE']
npop = nrow * ncol
offset = 1

idx = gids - offset < npop
gids, ts = gids[idx], ts[idx]

ts_bins = np.arange(500., 2500., 10.)
h = np.histogram2d(ts, gids - offset, bins=[ts_bins, range(npop + 1)])[0]
hh = h.reshape(-1, nrow, ncol)
Esempio n. 2
0
    {
        'mode': 'Perlin_uniform',
        'specs': {
            'size': 4
        }
    },
    {
        'mode': 'homogeneous',
        'specs': {
            'phi': 3
        }
    },
]

simulation = 'sequence_I_networks'
params = protocol.get_parameters(simulation)

nrow, ncol = params['nrow'], params['ncol']
npop = nrow * ncol
ncon = params['ncon']

size = 8
ax = axes[1, 0]
ax.text(0.05,
        0.95,
        'Random',
        verticalalignment='top',
        horizontalalignment='left',
        transform=ax.transAxes,
        fontsize=8,
        bbox={