{ 'mode': 'Perlin', 'specs': { 'size': 4 } }, { 'mode': 'Perlin_uniform', 'specs': { 'size': 4 } }, ] simulation = 'sequence_EI_networks' params = protocol.get_parameters(simulation).as_dict() params.update({'landscape': landscapes[-1]}) gids, ts = protocol.get_or_simulate(simulation, params) nrow = ncol = params['nrowE'] npop = nrow * ncol offset = 1 idx = gids - offset < npop gids, ts = gids[idx], ts[idx] ts_bins = np.arange(500., 2500., 10.) h = np.histogram2d(ts, gids - offset, bins=[ts_bins, range(npop + 1)])[0] hh = h.reshape(-1, nrow, ncol)
{ 'mode': 'Perlin_uniform', 'specs': { 'size': 4 } }, { 'mode': 'homogeneous', 'specs': { 'phi': 3 } }, ] simulation = 'sequence_I_networks' params = protocol.get_parameters(simulation) nrow, ncol = params['nrow'], params['ncol'] npop = nrow * ncol ncon = params['ncon'] size = 8 ax = axes[1, 0] ax.text(0.05, 0.95, 'Random', verticalalignment='top', horizontalalignment='left', transform=ax.transAxes, fontsize=8, bbox={