Esempio n. 1
0
def apply_nms(all_boxes, thresh):
    """Apply non-maximum suppression to all predicted boxes output by the
    test_net method.
    """
    num_classes = len(all_boxes)
    num_images = len(all_boxes[0])
    nms_boxes = [[[] for _ in xrange(num_images)]
                 for _ in xrange(num_classes)]
    for cls_ind in xrange(num_classes):
        for im_ind in xrange(num_images):
            dets = all_boxes[cls_ind][im_ind]
            if dets == []:
                continue

            x1 = dets[:, 0]
            y1 = dets[:, 1]
            x2 = dets[:, 2]
            y2 = dets[:, 3]
            scores = dets[:, 4]
            inds = np.where((x2 > x1) & (y2 > y1) & (scores > cfg.TEST.DET_THRESHOLD))[0]
            dets = dets[inds,:]
            if dets == []:
                continue

            keep = nms(dets, thresh)
            if len(keep) == 0:
                continue
            nms_boxes[cls_ind][im_ind] = dets[keep, :].copy()
    return nms_boxes
Esempio n. 2
0
def test_net(sess,
             net,
             imdb,
             weights_filename,
             max_per_image=100,
             thresh=0.05):
    np.random.seed(cfg.RNG_SEED)
    """Test a Fast R-CNN network on an image database."""
    num_images = len(imdb.image_index)
    # all detections are collected into:
    #  all_boxes[cls][image] = N x 5 array of detections in
    #  (x1, y1, x2, y2, score)
    all_boxes = [[[] for _ in range(num_images)]
                 for _ in range(imdb.num_classes)]

    output_dir = get_output_dir(imdb, weights_filename)
    # timers
    _t = {'im_detect': Timer(), 'misc': Timer()}

    for i in range(num_images):
        im = cv2.imread(imdb.image_path_at(i))

        _t['im_detect'].tic()
        scores, boxes = im_detect(sess, net, im)
        _t['im_detect'].toc()

        _t['misc'].tic()

        # skip j = 0, because it's the background class
        for j in range(1, imdb.num_classes):
            inds = np.where(scores[:, j] > thresh)[0]
            cls_scores = scores[inds, j]
            cls_boxes = boxes[inds, j * 4:(j + 1) * 4]
            cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
              .astype(np.float32, copy=False)
            keep = nms(cls_dets, cfg.TEST.NMS)
            cls_dets = cls_dets[keep, :]
            all_boxes[j][i] = cls_dets

        # Limit to max_per_image detections *over all classes*
        if max_per_image > 0:
            image_scores = np.hstack(
                [all_boxes[j][i][:, -1] for j in range(1, imdb.num_classes)])
            if len(image_scores) > max_per_image:
                image_thresh = np.sort(image_scores)[-max_per_image]
                for j in range(1, imdb.num_classes):
                    keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
                    all_boxes[j][i] = all_boxes[j][i][keep, :]
        _t['misc'].toc()

        print('im_detect: {:d}/{:d} {:.3f}s {:.3f}s' \
            .format(i + 1, num_images, _t['im_detect'].average_time,
                _t['misc'].average_time))

    det_file = os.path.join(output_dir, 'detections.pkl')
    with open(det_file, 'wb') as f:
        pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)

    print('Evaluating detections')
    imdb.evaluate_detections(all_boxes, output_dir)
Esempio n. 3
0
def apply_nms(all_boxes, thresh):
    """Apply non-maximum suppression to all predicted boxes output by the
    test_net method.
    """
    num_classes = len(all_boxes)
    num_images = len(all_boxes[0])
    nms_boxes = [[[] for _ in range(num_images)] for _ in range(num_classes)]
    for cls_ind in range(num_classes):
        for im_ind in range(num_images):
            dets = all_boxes[cls_ind][im_ind]
            if dets == []:
                continue
            keep = nms(dets, thresh)
            if len(keep) == 0:
                continue
            nms_boxes[cls_ind][im_ind] = dets[keep, :].copy()
    return nms_boxes
Esempio n. 4
0
def test_net(sess, net, imdb, weights_filename , max_per_image=300, thresh=0.05, vis=False):
    """Test a Fast R-CNN network on an image database."""
    num_images = len(imdb.image_index)
    # all detections are collected into:
    #    all_boxes[cls][image] = N x 5 array of detections in
    #    (x1, y1, x2, y2, score)
    all_boxes = [[[] for _ in xrange(num_images)]
                 for _ in xrange(imdb.num_classes)]

    output_dir = get_output_dir(imdb, weights_filename)
    # timers
    _t = {'im_detect' : Timer(), 'misc' : Timer()}

    if not cfg.TEST.HAS_RPN:
        roidb = imdb.roidb

    for i in xrange(num_images):
        # filter out any ground truth boxes
        if cfg.TEST.HAS_RPN:
            box_proposals = None
        else:
            # The roidb may contain ground-truth rois (for example, if the roidb
            # comes from the training or val split). We only want to evaluate
            # detection on the *non*-ground-truth rois. We select those the rois
            # that have the gt_classes field set to 0, which means there's no
            # ground truth.
            box_proposals = roidb[i]['boxes'][roidb[i]['gt_classes'] == 0]

        im = cv2.imread(imdb.image_path_at(i))
        _t['im_detect'].tic()
        scores, boxes = im_detect(sess, net, im, box_proposals)
        _t['im_detect'].toc()

        _t['misc'].tic()
        if vis:
            image = im[:, :, (2, 1, 0)]
            plt.cla()
            plt.imshow(image)

        # skip j = 0, because it's the background class
        for j in xrange(1, imdb.num_classes):
            inds = np.where(scores[:, j] > thresh)[0]
            cls_scores = scores[inds, j]
            cls_boxes = boxes[inds, j*4:(j+1)*4]
            cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
                .astype(np.float32, copy=False)
            keep = nms(cls_dets, cfg.TEST.NMS)
            cls_dets = cls_dets[keep, :]
            if vis:
                vis_detections(image, imdb.classes[j], cls_dets)
            all_boxes[j][i] = cls_dets
        if vis:
           plt.show()
        # Limit to max_per_image detections *over all classes*
        if max_per_image > 0:
            image_scores = np.hstack([all_boxes[j][i][:, -1]
                                      for j in xrange(1, imdb.num_classes)])
            if len(image_scores) > max_per_image:
                image_thresh = np.sort(image_scores)[-max_per_image]
                for j in xrange(1, imdb.num_classes):
                    keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
                    all_boxes[j][i] = all_boxes[j][i][keep, :]
        _t['misc'].toc()

        print 'im_detect: {:d}/{:d} {:.3f}s {:.3f}s' \
              .format(i + 1, num_images, _t['im_detect'].average_time,
                      _t['misc'].average_time)

    det_file = os.path.join(output_dir, 'detections.pkl')
    with open(det_file, 'wb') as f:
        cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL)

    print 'Evaluating detections'
    imdb.evaluate_detections(all_boxes, output_dir)
Esempio n. 5
0
def test_net(net, imdb):
    """Test a Fast R-CNN network on an image database."""
    num_images = len(imdb.image_index)
    # heuristic: keep an average of 40 detections per class per images prior
    # to NMS
    max_per_set = 40 * num_images
    # heuristic: keep at most 100 detection per class per image prior to NMS
    max_per_image = 100
    # detection thresold for each class (this is adaptively set based on the
    # max_per_set constraint)
    thresh = -np.inf * np.ones(imdb.num_classes)
    # top_scores will hold one minheap of scores per class (used to enforce
    # the max_per_set constraint)
    top_scores = [[] for _ in xrange(imdb.num_classes)]
    # all detections are collected into:
    #    all_boxes[cls][image] = N x 5 array of detections in
    #    (x1, y1, x2, y2, score)
    all_boxes = [[[] for _ in xrange(num_images)]
                 for _ in xrange(imdb.num_classes)]

    output_dir = get_output_dir(imdb, net)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # timers
    _t = {'im_detect': Timer(), 'misc': Timer()}

    roidb = imdb.roidb
    for i in xrange(num_images):
        im = cv2.imread(imdb.image_path_at(i))
        _t['im_detect'].tic()
        scores, boxes = im_detect(net, im, roidb[i]['boxes'])
        _t['im_detect'].toc()

        _t['misc'].tic()
        for j in xrange(1, imdb.num_classes):
            inds = np.where((scores[:, j] > thresh[j])
                            & (roidb[i]['gt_classes'] == 0))[0]
            cls_scores = scores[inds, j]
            cls_boxes = boxes[inds, j * 4:(j + 1) * 4]
            top_inds = np.argsort(-cls_scores)[:max_per_image]
            cls_scores = cls_scores[top_inds]
            cls_boxes = cls_boxes[top_inds, :]
            # push new scores onto the minheap
            for val in cls_scores:
                heapq.heappush(top_scores[j], val)
            # if we've collected more than the max number of detection,
            # then pop items off the minheap and update the class threshold
            if len(top_scores[j]) > max_per_set:
                while len(top_scores[j]) > max_per_set:
                    heapq.heappop(top_scores[j])
                thresh[j] = top_scores[j][0]

            all_boxes[j][i] = \
                    np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
                    .astype(np.float32, copy=False)

            if 0:
                keep = nms(all_boxes[j][i], 0.3)
                vis_detections(im, imdb.classes[j], all_boxes[j][i][keep, :])
        _t['misc'].toc()

        print 'im_detect: {:d}/{:d} {:.3f}s {:.3f}s' \
              .format(i + 1, num_images, _t['im_detect'].average_time,
                      _t['misc'].average_time)

    for j in xrange(1, imdb.num_classes):
        for i in xrange(num_images):
            inds = np.where(all_boxes[j][i][:, -1] > thresh[j])[0]
            all_boxes[j][i] = all_boxes[j][i][inds, :]

    det_file = os.path.join(output_dir, 'detections.pkl')
    with open(det_file, 'wb') as f:
        cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL)

    print 'Applying NMS to all detections'
    nms_dets = apply_nms(all_boxes, cfg.TEST.NMS)

    print 'Evaluating detections'
    imdb.evaluate_detections(nms_dets, output_dir)
Esempio n. 6
0
def test_net_vg(sess,
                net,
                roidb,
                output_dir,
                num_classes,
                max_per_image=100,
                thresh=0.05):
    np.random.seed(cfg.RNG_SEED)
    num_images = len(roidb)
    # all detections are collected into:
    #  all_boxes[cls][image] = N x 5 array of detections in
    #  (x1, y1, x2, y2, score)
    all_boxes = [[[] for _ in range(num_images)] for _ in range(num_classes)]

    print("output_dir is:", output_dir)
    print("\n")
    # timers
    _t = {'im_detect': Timer(), 'misc': Timer()}
    dete_pred = []

    for i in range(num_images):
        print("i: {0}/{1}".format(i, num_images))
        dete_pred_temp = {
            'image': roidb[i]['image'],
            'gt_boxes': roidb[i]['boxes'],
            'gt_classes': roidb[i]['gt_classes']
        }

        im = cv2.imread(roidb[i]['image'])

        _t['im_detect'].tic()
        scores, boxes = im_detect(sess, net, im)
        _t['im_detect'].toc()

        _t['misc'].tic()

        # skip j = 0, because it's the background class
        for j in range(1, num_classes):
            inds = np.where(scores[:, j] > thresh)[0]
            cls_scores = scores[inds, j]
            cls_boxes = boxes[inds, j * 4:(j + 1) * 4]
            cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
              .astype(np.float32, copy=False)
            keep = nms(cls_dets, cfg.TEST.NMS)
            cls_dets = cls_dets[keep, :]
            all_boxes[j][i] = cls_dets

        # Limit to max_per_image detections *over all classes*
        if max_per_image > 0:
            image_scores = np.hstack(
                [all_boxes[j][i][:, -1] for j in range(1, num_classes)])
            if len(image_scores) > max_per_image:
                image_thresh = np.sort(image_scores)[-max_per_image]
                for j in range(1, num_classes):
                    keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
                    all_boxes[j][i] = all_boxes[j][i][keep, :]
        _t['misc'].toc()

        pred_boxes = []
        # this is for background
        pred_boxes.append([])
        for j in range(1, num_classes):
            pred_boxes.append(all_boxes[j][i])
        dete_pred_temp['pred_boxes'] = pred_boxes
        dete_pred.append(dete_pred_temp)

    np.savez(output_dir, dete_pred_vg=dete_pred)
    return dete_pred