def do(self): angleToSum = abs(GeoMath.angleBetweenPointsByPrim(GeoMath.primBoundingBox(self.curPrim.prim).center(), \ GeoMath.primBoundingBox(self.nextPrim.prim).center(), self.refPrim.prim)) heuristic = self.curPrim.F + 1 angle = self.curPrim.sumAngle + angleToSum logging.debug("Heuristic for prim %s with next prim %s and ref prim %s, angle to sum: %s", str(self.curPrim.prim.number()), str(self.nextPrim.prim.number()), str(self.refPrim.prim.number()), str(angle)) self.nextPrim.setHeuristic(heuristic, 0) self.nextPrim.setSumAngle(angle) return self.nextPrim
def do(self): #Start pathfinding with backtracking logging.debug("Start method do, class PathBackTracking") logging.debug("Group partially destroyed: %s", str([p.prim.number() for p in self.partDes])) logging.debug("Group totally destroyed: %s", str([p.prim.number() for p in self.totDes])) global TimeExecutionFirst global TimeExecutionCurrent global MAXTIMEFORALLPATHS count = 1 pathAchieved = False TimeExecutionFirst = time.time() while(not pathAchieved and count < 2): self.max_iterations_exceeded = False path = [] pathAchieved = False if(count == 1): refPrim = self.getBestPrimReference(self.firstPrim) angle = GeoMath.angleBetweenPointsByPrim(GeoMath.primBoundingBox(self.lastPrim.prim).center(), GeoMath.primBoundingBox(self.firstPrim.prim).center(), refPrim.prim) logging.debug("Main angle, which determine direction: %s", str(angle)) self.clockWise = angle < 0 else: self.clockWise = not self.clockWise path.append(self.firstPrim) pathAchieved = self.backTracking(self.firstPrim, path) count += 1 self.path = path logging.debug("Last prim: %s, First prim: %s", str(self.lastPrim.prim.number()), str(self.firstPrim.prim.number())) if(pathAchieved): self.goodPath = True logging.debug("End method do, class PathBackTracking. State: good") else: self.goodPath = False logging.debug("End method do, class PathBackTracking. State: No path achieved")
def do(self): epsilon = 0.001 if (self.DEBUG): print "REF PRIM" print self.refPrim.prim.number() print "########## START PATH ###############" """ Construct a path around refPrim with start prim "firstPrim" and goal prim "lastPrim" if parameter minimum is true, que path is the minimum path, otherwise is the "maximum" path (inverted heuristic, but not maximum path) """ count = 0 path = [] while (not path and count < 2): count += 1 openList = [] closedList = [] connectedPrims = [] if (count == 1): angleMin, angleMax = GeoMath.getMinMaxAngleBetweenPointsInPrim( self.lastPrim.prim, self.firstPrim.prim, self.refPrim.prim) clockWise = max(math.fabs(angleMin), math.fabs(angleMax)) == math.fabs(angleMin) else: clockWise = not clockWise if (self.DEBUG): print "Angulo min max" print angleMin, angleMax, clockWise openList.append(self.firstPrim) # Start A* search while (len(openList) > 0 and (self.lastPrim not in closedList)): # Get the node with more or less heuristic depending of parm minimum if (self.minimum): curPrim = openList[0] del openList[0] else: curPrim = openList.pop() # Switch the current prim to closest list closedList.append(curPrim) # Get connected primitives connectedPrims = GeoMath.getConnectedInfoPrims( curPrim, self.partDes) if (self.DEBUG): print "CLOSE PRIM" print curPrim.prim.number() print "CONNECTED PRIMS" print[conp.prim.number() for conp in connectedPrims] # Clean not possible primitives(because we are go around refPrim) for index in range(len(connectedPrims)): conPrim = connectedPrims[index] # angleMin, angleMax = GeoMath.getMinMaxAngleBetweenPointsInPrim(curPrim.prim, conPrim.prim, refPrim) angleMin = angleMax = GeoMath.angleBetweenPointsByPrim( GeoMath.primBoundingBox(curPrim.prim).center(), GeoMath.primBoundingBox(conPrim.prim).center(), self.refPrim) dot = GeoMath.vecDotProduct(self.refPrim.normal(), conPrim.prim.normal()) if (dot > 1 - epsilon): # precision error dot = 1 # math.acos(dot) > aperture if (self.volume): edges = GeoMath.getEdgesBetweenPrims( curPrim.prim, curPrim.parent.prim) for edge in edges: rs = RejectionSampling.RejectionSampling( edge, self.volume) rs.do() inicialPoint = rs.getValue() if (inicialPoint): break if((not((math.acos(dot) > self.aperture) or \ (clockWise and (angleMin > 0 or angleMin < -(math.pi - math.pi * 0.1))) or \ (not clockWise and (angleMax < 0 or angleMax > (math.pi - math.pi * 0.1))) or \ (conPrim in closedList) or \ (conPrim == self.lastPrim and curPrim.sumAngle < (1.4 * math.pi))) or \ (conPrim == self.lastPrim and curPrim.sumAngle > (1.4 * math.pi))) and \ (inicialPoint or not self.volume)): # If prim is already in openList if (conPrim in openList): heuristic = 1 if ((curPrim.G + heuristic > conPrim.G and not self.minimum) or (curPrim.G + heuristic < conPrim.G and self.minimum)): # If this path is better than the path with the current parent conPrim.setParent(curPrim) conPrim = self.calculateHeuristic( curPrim, conPrim, self.refPrim) if (self.volume): conPrim.fPoint = list(inicialPoint) curPrim.iPoint = list(inicialPoint) if (self.DEBUG): print "Prim aceptada y ya estaba en openlist" print curPrim.prim.number( ), conPrim.prim.number() else: conPrim.setParent(curPrim) conPrim = self.calculateHeuristic( curPrim, conPrim, self.refPrim) if (self.volume): conPrim.fPoint = list(inicialPoint) curPrim.iPoint = list(inicialPoint) openList.append(conPrim) if (self.DEBUG): print "Prim aceptada y no estaba en openlist" print curPrim.prim.number( ), conPrim.prim.number() # Sort nodes by heuristic openList.sort(key=lambda infoPrim: infoPrim.F) if (self.lastPrim in closedList): if (self.DEBUG): print "Last prim Angle", self.lastPrim.sumAngle curPrim = closedList.pop() while (curPrim != self.firstPrim): path.append(curPrim) curPrim = curPrim.parent path.append(curPrim) else: path = [] path.reverse() print "########## FINALIZE PATH ###############" self.path = path
def do(self): epsilon = 0.001 if (self.DEBUG): print "REF PRIM" print self.refPrim.prim.number() print "########## START PATH ###############" """ Construct a path around refPrim with start prim "firstPrim" and goal prim "lastPrim" if parameter minimum is true, que path is the minimum path, otherwise is the "maximum" path (inverted heuristic, but not maximum path) """ count = 0 path = [] while(not path and count < 2): count += 1 openList = [] closedList = [] connectedPrims = [] if(count == 1): angleMin, angleMax = GeoMath.getMinMaxAngleBetweenPointsInPrim(self.lastPrim.prim, self.firstPrim.prim, self.refPrim.prim) clockWise = max(math.fabs(angleMin), math.fabs(angleMax)) == math.fabs(angleMin) else: clockWise = not clockWise if(self.DEBUG): print "Angulo min max" print angleMin, angleMax, clockWise openList.append(self.firstPrim) # Start A* search while(len(openList) > 0 and (self.lastPrim not in closedList)): # Get the node with more or less heuristic depending of parm minimum if(self.minimum): curPrim = openList[0] del openList[0] else: curPrim = openList.pop() # Switch the current prim to closest list closedList.append(curPrim) # Get connected primitives connectedPrims = GeoMath.getConnectedInfoPrims(curPrim, self.partDes) if(self.DEBUG): print "CLOSE PRIM" print curPrim.prim.number() print "CONNECTED PRIMS" print [conp.prim.number() for conp in connectedPrims] # Clean not possible primitives(because we are go around refPrim) for index in range(len(connectedPrims)): conPrim = connectedPrims[index] # angleMin, angleMax = GeoMath.getMinMaxAngleBetweenPointsInPrim(curPrim.prim, conPrim.prim, refPrim) angleMin = angleMax = GeoMath.angleBetweenPointsByPrim(GeoMath.primBoundingBox(curPrim.prim).center(), GeoMath.primBoundingBox(conPrim.prim).center(), self.refPrim) dot = GeoMath.vecDotProduct(self.refPrim.normal(), conPrim.prim.normal()) if(dot > 1 - epsilon): # precision error dot = 1 # math.acos(dot) > aperture if(self.volume): edges = GeoMath.getEdgesBetweenPrims(curPrim.prim, curPrim.parent.prim) for edge in edges: rs = RejectionSampling.RejectionSampling(edge, self.volume) rs.do() inicialPoint = rs.getValue() if(inicialPoint): break if((not((math.acos(dot) > self.aperture) or \ (clockWise and (angleMin > 0 or angleMin < -(math.pi - math.pi * 0.1))) or \ (not clockWise and (angleMax < 0 or angleMax > (math.pi - math.pi * 0.1))) or \ (conPrim in closedList) or \ (conPrim == self.lastPrim and curPrim.sumAngle < (1.4 * math.pi))) or \ (conPrim == self.lastPrim and curPrim.sumAngle > (1.4 * math.pi))) and \ (inicialPoint or not self.volume)): # If prim is already in openList if(conPrim in openList): heuristic = 1 if((curPrim.G + heuristic > conPrim.G and not self.minimum) or (curPrim.G + heuristic < conPrim.G and self.minimum)): # If this path is better than the path with the current parent conPrim.setParent(curPrim) conPrim = self.calculateHeuristic(curPrim, conPrim, self.refPrim) if(self.volume): conPrim.fPoint = list(inicialPoint) curPrim.iPoint = list(inicialPoint) if(self.DEBUG): print "Prim aceptada y ya estaba en openlist" print curPrim.prim.number(), conPrim.prim.number() else: conPrim.setParent(curPrim) conPrim = self.calculateHeuristic(curPrim, conPrim, self.refPrim) if(self.volume): conPrim.fPoint = list(inicialPoint) curPrim.iPoint = list(inicialPoint) openList.append(conPrim) if(self.DEBUG): print "Prim aceptada y no estaba en openlist" print curPrim.prim.number(), conPrim.prim.number() # Sort nodes by heuristic openList.sort(key=lambda infoPrim: infoPrim.F) if(self.lastPrim in closedList): if(self.DEBUG): print "Last prim Angle", self.lastPrim.sumAngle curPrim = closedList.pop() while(curPrim != self.firstPrim): path.append(curPrim) curPrim = curPrim.parent path.append(curPrim) else: path = [] path.reverse() print "########## FINALIZE PATH ###############" self.path = path