Esempio n. 1
0
def test_color():
    batch_size = 3
    image_size = [256, 512]
    dataset = Pascalvoc2007(
        batch_size=batch_size, pre_processor=ResizeWithGtBoxes(image_size),
        augmentor=Color((0.0, 2.0)),
    )
    dataset = DatasetIterator(dataset)

    for _ in range(5):
        images, labels = dataset.feed()
        _show_images_with_boxes(images, labels)
Esempio n. 2
0
def test_color():
    batch_size = 3
    image_size = [256, 512]
    dataset = LmThingsOnATable(
        batch_size=batch_size,
        pre_processor=ResizeWithGtBoxes(image_size),
        augmentor=Color((0.0, 2.0)),
    )

    for _ in range(5):
        images, labels = dataset.feed()
        _show_images_with_boxes(images, labels)
Esempio n. 3
0
}
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.ANCHORS = anchors
NETWORK.OBJECT_SCALE = 5.0
NETWORK.NO_OBJECT_SCALE = 1.0
NETWORK.CLASS_SCALE = 1.0
NETWORK.COORDINATE_SCALE = 1.0
NETWORK.LOSS_IOU_THRESHOLD = 0.6
NETWORK.WEIGHT_DECAY_RATE = 0.0005
NETWORK.SCORE_THRESHOLD = score_threshold
NETWORK.NMS_IOU_THRESHOLD = nms_iou_threshold
NETWORK.NMS_MAX_OUTPUT_SIZE = nms_max_output_size
NETWORK.LOSS_WARMUP_STEPS = int(8000 / BATCH_SIZE)

# dataset
DATASET = EasyDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    FlipLeftRight(),
    Brightness((0.75, 1.25)),
    Color((0.75, 1.25)),
    Contrast((0.75, 1.25)),
    Hue((-10, 10)),
    SSDRandomCrop(min_crop_ratio=0.7),
])
DATASET.ENABLE_PREFETCH = True