def test_color(): batch_size = 3 image_size = [256, 512] dataset = Pascalvoc2007( batch_size=batch_size, pre_processor=ResizeWithGtBoxes(image_size), augmentor=Color((0.0, 2.0)), ) dataset = DatasetIterator(dataset) for _ in range(5): images, labels = dataset.feed() _show_images_with_boxes(images, labels)
def test_color(): batch_size = 3 image_size = [256, 512] dataset = LmThingsOnATable( batch_size=batch_size, pre_processor=ResizeWithGtBoxes(image_size), augmentor=Color((0.0, 2.0)), ) for _ in range(5): images, labels = dataset.feed() _show_images_with_boxes(images, labels)
} NETWORK.IMAGE_SIZE = IMAGE_SIZE NETWORK.BATCH_SIZE = BATCH_SIZE NETWORK.DATA_FORMAT = DATA_FORMAT NETWORK.ANCHORS = anchors NETWORK.OBJECT_SCALE = 5.0 NETWORK.NO_OBJECT_SCALE = 1.0 NETWORK.CLASS_SCALE = 1.0 NETWORK.COORDINATE_SCALE = 1.0 NETWORK.LOSS_IOU_THRESHOLD = 0.6 NETWORK.WEIGHT_DECAY_RATE = 0.0005 NETWORK.SCORE_THRESHOLD = score_threshold NETWORK.NMS_IOU_THRESHOLD = nms_iou_threshold NETWORK.NMS_MAX_OUTPUT_SIZE = nms_max_output_size NETWORK.LOSS_WARMUP_STEPS = int(8000 / BATCH_SIZE) # dataset DATASET = EasyDict() DATASET.BATCH_SIZE = BATCH_SIZE DATASET.DATA_FORMAT = DATA_FORMAT DATASET.PRE_PROCESSOR = PRE_PROCESSOR DATASET.AUGMENTOR = Sequence([ FlipLeftRight(), Brightness((0.75, 1.25)), Color((0.75, 1.25)), Contrast((0.75, 1.25)), Hue((-10, 10)), SSDRandomCrop(min_crop_ratio=0.7), ]) DATASET.ENABLE_PREFETCH = True