def test_logistic_cg(): try: import scipy logistic_cg.cg_optimization_mnist(n_epochs=10) except ImportError: from nose.plugins.skip import SkipTest raise SkipTest('SciPy not available. Needed for the logistic_cg example.')
def test_logistic_cg(): try: import scipy logistic_cg.cg_optimization_mnist(n_epochs=10) except ImportError: from nose.plugins.skip import SkipTest raise SkipTest( 'SciPy not available. Needed for the logistic_cg example.')
def test_logistic_cg(): logistic_cg.cg_optimization_mnist(n_epochs=10)
def test_logistic_cg(): t0 = time.time() logistic_cg.cg_optimization_mnist(n_epochs=10) print >> sys.stderr, "test_logistic_cg took %.3fs expected 14s in our buildbot" % ( time.time() - t0)
def test_logistic_cg(): t0=time.time() logistic_cg.cg_optimization_mnist(n_epochs=10) print >> sys.stderr, "test_logistic_cg took %.3fs expected 14s in our buildbot"%(time.time()-t0)
import logistic_sgd import logistic_sgd_gaussian import logistic_sgd_binomial import mlp import mlp_dropOut import mlp_dropConnect import convolutional_mlp import con_mlp_dropConnect import con_mlp_dropOut c100 = 'cifar-100-python.tar.gz' sys.stdout = open('results/cifar-100_results/lcg.out', 'w') logistic_cg.cg_optimization_mnist(mnist_pkl_gz=c100) sys.stdout = open('results/cifar-100_results/lsgd.out', 'w') logistic_sgd.sgd_optimization_mnist(dataset=c100) sys.stdout = open('results/cifar-100_results/lsgd_gau.out', 'w') logistic_sgd_gaussian.sgd_optimization_mnist(dataset=c100) sys.stdout = open('results/cifar-100_results/lsgd_bin.out', 'w') logistic_sgd_binomial.sgd_optimization_mnist(dataset=c100) sys.stdout = open('results/cifar-100_results/mlp.out', 'w') mlp.test_mlp(dataset=c100) sys.stdout = open('results/cifar-100_results/mlpO.out', 'w') # mlp_dropOut.test_mlp(p=0.8, n_hidden = 100)