def get_meta_graph_stat(g):
    return MetaGraphStat(g, KWs)

trees = pkl.load(open('tmp/binary_rooted_tree_samples.pkl'))

U = 0.5

names = [# 'lst(round)', 
         'lst(ceil)', 'lst(floor)', 
         # 'greedy'
]

funcs = [lambda g, r, U, func=func: lst_dag(g, r, U,
                                            fixed_point_func=func,
                                            debug=False,
                                            edge_weight_decimal_point=2)
         for func in (# round,
                      ceil, 
                      floor)]
# funcs.append(greedy_grow)

# t = trees[5]

# from lst import round_edge_weights_by_multiplying

# g_ceil, U = round_edge_weights_by_multiplying(t, U, 2, fixed_point_func=ceil)
# g_floor, U = round_edge_weights_by_multiplying(t, U, 2, fixed_point_func=floor)
# print(U)
# for u, v in g_ceil.edges():
#     if 'dummy' not in g_ceil.node[v]:
Esempio n. 2
0
    )

    parser.add_argument('--random_seed',
                        type=int,
                        default=None)

    args = parser.parse_args()

    random.seed(args.random_seed)
    np.random.seed(args.random_seed)

    dist_funcs = {'euclidean': euclidean, 'cosine': cosine}
    dist_func = dist_funcs[args.dist]

    lst = lambda g, r, U: lst_dag(g, r, U,
                                  edge_weight_decimal_point=args.fixed_point,
                                  debug=False)
    variance_method = lambda g, r, U: dp_dag_general(
        g, r,
        int(U*(10**args.fixed_point)),
        make_variance_cost_func(dist_func, 'topics',
                                args.fixed_point),
        debug=False
    )

    quota_based_method = lambda g, r, U: binary_search_using_charikar(
        g, r, U, args.charikar_level
    )

    methods = {'lst': lst,
               'lst+dij': lst,
Esempio n. 3
0

trees = pkl.load(open('tmp/binary_rooted_tree_samples.pkl'))

U = 0.5

names = [  # 'lst(round)', 
    'lst(ceil)',
    'lst(floor)',
    # 'greedy'
]

funcs = [
    lambda g, r, U, func=func: lst_dag(g,
                                       r,
                                       U,
                                       fixed_point_func=func,
                                       debug=False,
                                       edge_weight_decimal_point=2)
    for func in (  # round,
        ceil, floor)
]
# funcs.append(greedy_grow)

# t = trees[5]

# from lst import round_edge_weights_by_multiplying

# g_ceil, U = round_edge_weights_by_multiplying(t, U, 2, fixed_point_func=ceil)
# g_floor, U = round_edge_weights_by_multiplying(t, U, 2, fixed_point_func=floor)
# print(U)
# for u, v in g_ceil.edges():
    parser.add_argument('--charikar_level',
                        type=int,
                        default=1,
                        help="the `level` parameter in charikar's algorithm")

    parser.add_argument('--random_seed', type=int, default=None)

    args = parser.parse_args()

    random.seed(args.random_seed)
    np.random.seed(args.random_seed)

    dist_funcs = {'euclidean': euclidean, 'cosine': cosine}
    dist_func = dist_funcs[args.dist]

    lst = lambda g, r, U: lst_dag(
        g, r, U, edge_weight_decimal_point=args.fixed_point, debug=False)
    variance_method = lambda g, r, U: dp_dag_general(
        g,
        r,
        int(U * (10**args.fixed_point)),
        make_variance_cost_func(dist_func, 'topics', args.fixed_point),
        debug=False)

    quota_based_method = lambda g, r, U: binary_search_using_charikar(
        g, r, U, args.charikar_level)

    methods = {
        'lst': lst,
        'lst+dij': lst,
        'variance': variance_method,
        'greedy': greedy_grow_numpy,