Esempio n. 1
0
def _xyz_to_jab_cam02ucs(xyz, xyzw, ucs=True, conditions=None):
    """ 
    Calculate CAM02-UCS J'a'b' coordinates from xyz tristimulus values of sample and white point.
    
    Args:
        :xyz:
            | ndarray with sample tristimulus values
        :xyzw:
            | ndarray with white point tristimulus values  
        :conditions:
            | None, optional
            | Dictionary with viewing conditions.
            | None results in:
            |   {'La':100, 'Yb':20, 'D':1, 'surround':'avg'}
            | For more info see luxpy.cam.ciecam02()?
    
    Returns:
        :jab:
            | ndarray with J'a'b' coordinates.
    """
    #--------------------------------------------
    # Get/ set conditions parameters:
    if conditions is not None:
        surround_parameters = {
            'surrounds': ['avg', 'dim', 'dark'],
            'avg': {
                'c': 0.69,
                'Nc': 1.0,
                'F': 1.0,
                'FLL': 1.0
            },
            'dim': {
                'c': 0.59,
                'Nc': 0.9,
                'F': 0.9,
                'FLL': 1.0
            },
            'dark': {
                'c': 0.525,
                'Nc': 0.8,
                'F': 0.8,
                'FLL': 1.0
            }
        }
        La = conditions['La']
        Yb = conditions['Yb']
        D = conditions['D']
        surround = conditions['surround']
        if isinstance(surround, str):
            surround = surround_parameters[conditions['surround']]
        F, FLL, Nc, c = [surround[x] for x in sorted(surround.keys())]
    else:
        # set defaults:
        La, Yb, D, F, FLL, Nc, c = 100, 20, 1, 1, 1, 1, 0.69

    #--------------------------------------------
    # Define sensor space and cat matrices:
    mhpe = np.array([[0.38971, 0.68898, -0.07868], [-0.22981, 1.1834, 0.04641],
                     [0.0, 0.0, 1.0]
                     ])  # Hunt-Pointer-Estevez sensors (cone fundamentals)

    mcat = np.array([[0.7328, 0.4296, -0.1624], [-0.7036, 1.6975, 0.0061],
                     [0.0030, 0.0136, 0.9834]])  # CAT02 sensor space

    #--------------------------------------------
    # pre-calculate some matrices:
    invmcat = np.linalg.inv(mcat)
    mhpe_x_invmcat = np.dot(mhpe, invmcat)

    #--------------------------------------------
    # calculate condition dependent parameters:
    Yw = xyzw[..., 1:2].T
    k = 1.0 / (5.0 * La + 1.0)
    FL = 0.2 * (k**4.0) * (5.0 * La) + 0.1 * ((1.0 - k**4.0)**2.0) * (
        (5.0 * La)**(1.0 / 3.0))  # luminance adaptation factor
    n = Yb / Yw
    Nbb = 0.725 * (1 / n)**0.2
    Ncb = Nbb
    z = 1.48 + FLL * n**0.5

    if D is None:
        D = F * (1.0 - (1.0 / 3.6) * np.exp((-La - 42.0) / 92.0))

    #--------------------------------------------
    # transform from xyz, xyzw to cat sensor space:
    rgb = math.dot23(mcat, xyz.T)
    rgbw = mcat @ xyzw.T

    #--------------------------------------------
    # apply von Kries cat:
    rgbc = (
        (D * Yw / rgbw)[..., None] + (1 - D)
    ) * rgb  # factor 100 from ciecam02 is replaced with Yw[i] in ciecam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)
    rgbwc = (
        (D * Yw / rgbw) + (1 - D)
    ) * rgbw  # factor 100 from ciecam02 is replaced with Yw[i] in ciecam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)

    #--------------------------------------------
    # convert from cat02 sensor space to cone sensors (hpe):
    rgbp = math.dot23(mhpe_x_invmcat, rgbc).T
    rgbwp = (mhpe_x_invmcat @ rgbwc).T

    #--------------------------------------------
    # apply Naka_rushton repsonse compression:
    naka_rushton = lambda x: 400 * x**0.42 / (x**0.42 + 27.13) + 0.1

    rgbpa = naka_rushton(FL * rgbp / 100.0)
    p = np.where(rgbp < 0)
    rgbpa[p] = 0.1 - (naka_rushton(FL * np.abs(rgbp[p]) / 100.0) - 0.1)

    rgbwpa = naka_rushton(FL * rgbwp / 100.0)
    pw = np.where(rgbwp < 0)
    rgbwpa[pw] = 0.1 - (naka_rushton(FL * np.abs(rgbwp[pw]) / 100.0) - 0.1)

    #--------------------------------------------
    # Calculate achromatic signal:
    A = (2.0 * rgbpa[..., 0] + rgbpa[..., 1] +
         (1.0 / 20.0) * rgbpa[..., 2] - 0.305) * Nbb
    Aw = (2.0 * rgbwpa[..., 0] + rgbwpa[..., 1] +
          (1.0 / 20.0) * rgbwpa[..., 2] - 0.305) * Nbb

    #--------------------------------------------
    # calculate initial opponent channels:
    a = rgbpa[..., 0] - 12.0 * rgbpa[..., 1] / 11.0 + rgbpa[..., 2] / 11.0
    b = (1.0 / 9.0) * (rgbpa[..., 0] + rgbpa[..., 1] - 2.0 * rgbpa[..., 2])

    #--------------------------------------------
    # calculate hue h and eccentricity factor, et:
    h = np.arctan2(b, a)
    et = (1.0 / 4.0) * (np.cos(h + 2.0) + 3.8)

    #--------------------------------------------
    # calculate lightness, J:
    J = 100.0 * (A / Aw)**(c * z)

    #--------------------------------------------
    # calculate chroma, C:
    t = ((50000.0 / 13.0) * Nc * Ncb * et *
         ((a**2.0 + b**2.0)**0.5)) / (rgbpa[..., 0] + rgbpa[..., 1] +
                                      (21.0 / 20.0 * rgbpa[..., 2]))
    C = (t**0.9) * ((J / 100.0)**0.5) * (1.64 - 0.29**n)**0.73

    #--------------------------------------------
    # Calculate colorfulness, M:
    M = C * FL**0.25

    #--------------------------------------------
    # convert to cam02ucs J', aM', bM':
    if ucs == True:
        KL, c1, c2 = 1.0, 0.007, 0.0228
        Jp = (1.0 + 100.0 * c1) * J / (1.0 + c1 * J)
        Mp = (1.0 / c2) * np.log(1.0 + c2 * M)
    else:
        Jp = J
        Mp = M
    aMp = Mp * np.cos(h)
    bMp = Mp * np.sin(h)

    return np.dstack((Jp, aMp, bMp))
Esempio n. 2
0
def generate_grid(jab_ranges = None, out = 'grid', \
                  ax = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR),\
                  bx = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), \
                  jx = None, limit_grid_radius = 0):
    """
    Generate a grid of color coordinates.
    
    Args:
        :out:
            | 'grid' or 'vectors', optional
            |   - 'grid': outputs a single 2d numpy.nd-vector with the grid coordinates
            |   - 'vector': outputs each dimension seperately.
        :jab_ranges:
            | None or ndarray, optional
            | Specifies the pixelization of color space.
            | (ndarray.shape = (3,3), with  first axis: J,a,b, and second 
            | axis: min, max, delta)
        :ax:
            | default ndarray or user defined ndarray, optional
            | default = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR) 
        :bx:
            | default ndarray or user defined ndarray, optional
            | default = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR) 
        :jx:
            | None, optional
            | Note that not-None :jab_ranges: override :ax:, :bx: and :jx input.
        :limit_grid_radius:
            | 0, optional
            | A value of zeros keeps grid as specified  by axr,bxr.
            | A value > 0 only keeps (a,b) coordinates within :limit_grid_radius:
            
    Returns:
        :returns: 
            | single ndarray with ax,bx [,jx] 
            |  or
            | seperate ndarrays for each dimension specified.
    """
    # generate grid from jab_ranges array input, otherwise use ax, bx, jx input:
    if jab_ranges is not None:
        if jab_ranges.shape[0] == 3:
            jx = np.arange(jab_ranges[0][0], jab_ranges[0][1],
                           jab_ranges[0][2])
            ax = np.arange(jab_ranges[1][0], jab_ranges[1][1],
                           jab_ranges[1][2])
            bx = np.arange(jab_ranges[2][0], jab_ranges[2][1],
                           jab_ranges[2][2])
        else:
            jx = None
            ax = np.arange(jab_ranges[0][0], jab_ranges[0][1],
                           jab_ranges[0][2])
            bx = np.arange(jab_ranges[1][0], jab_ranges[1][1],
                           jab_ranges[1][2])

    # Generate grid from (jx), ax, bx:
    Ax, Bx = np.meshgrid(ax, bx)
    grid = np.dstack((Ax, Bx))
    grid = np.reshape(grid, (np.array(grid.shape[:-1]).prod(), grid.ndim - 1))
    if jx is not None:
        for i, v in enumerate(jx):
            gridi = np.hstack((np.ones((grid.shape[0], 1)) * v, grid))
            if i == 0:
                gridwithJ = gridi
            else:
                gridwithJ = np.vstack((gridwithJ, gridi))
        grid = gridwithJ

    if jx is None:
        ax = grid[:, 0:1]
        bx = grid[:, 1:2]
    else:
        jx = grid[:, 0:1]
        ax = grid[:, 1:2]
        bx = grid[:, 2:3]

    if limit_grid_radius > 0:  # limit radius of grid:
        Cr = (ax**2 + bx**2)**0.5
        ax = ax[Cr <= limit_grid_radius, None]
        bx = bx[Cr <= limit_grid_radius, None]
        if jx is not None:
            jx = jx[Cr <= limit_grid_radius, None]

    # create output:
    if out == 'grid':
        if jx is None:
            return np.hstack((ax, bx))
        else:
            return np.hstack((jx, ax, bx))
    else:
        if jx is None:
            return ax, bx
        else:
            return jx, ax, bx
Esempio n. 3
0
def plot_chromaticity_diagram_colors(diagram_samples = 256, diagram_opacity = 1.0, diagram_lightness = 0.25,\
                                      cieobs = _CIEOBS, cspace = 'Yxy', cspace_pars = {},\
                                      show = True, axh = None,\
                                      show_grid = False, label_fontname = 'Times New Roman', label_fontsize = 12,\
                                      **kwargs):
    """
    Plot the chromaticity diagram colors.
    
    Args:
        :diagram_samples:
            | 256, optional
            | Sampling resolution of color space.
        :diagram_opacity:
            | 1.0, optional
            | Sets opacity of chromaticity diagram
        :diagram_lightness:
            | 0.25, optional
            | Sets lightness of chromaticity diagram
        :axh: 
            | None or axes handle, optional
            | Determines axes to plot data in.
            | None: make new figure.
        :show:
            | True or False, optional
            | Invoke matplotlib.pyplot.show() right after plotting
        :cieobs:
            | luxpy._CIEOBS or str, optional
            | Determines CMF set to calculate spectrum locus or other.
        :cspace:
            | luxpy._CSPACE or str, optional
            | Determines color space / chromaticity diagram to plot data in.
            | Note that data is expected to be in specified :cspace:
        :cspace_pars:
            | {} or dict, optional
            | Dict with parameters required by color space specified in :cspace: 
            | (for use with luxpy.colortf())
        :show_grid:
            | False, optional
            | Show grid (True) or not (False)
        :label_fontname: 
            | 'Times New Roman', optional
            | Sets font type of axis labels.
        :label_fontsize:
            | 12, optional
            | Sets font size of axis labels.
        :kwargs: 
            | additional keyword arguments for use with matplotlib.pyplot.
        
    Returns:
        
    """

    if isinstance(cieobs, str):
        SL = _CMF[cieobs]['bar'][1:4].T
    else:
        SL = cieobs[1:4].T
    SL = 100.0 * SL / (SL[:, 1, None] + _EPS)
    SL = SL[SL.sum(axis=1) >
            0, :]  # avoid div by zero in xyz-to-Yxy conversion
    SL = colortf(SL, tf=cspace, tfa0=cspace_pars)
    plambdamax = SL[:, 1].argmax()
    SL = np.vstack(
        (SL[:(plambdamax + 1), :], SL[0])
    )  # add lowest wavelength data and go to max of gamut in x (there is a reversal for some cmf set wavelengths >~700 nm!)
    Y, x, y = asplit(SL)
    SL = np.vstack((x, y)).T

    # create grid for conversion to srgb
    offset = _EPS
    min_x = min(offset, x.min())
    max_x = max(1, x.max())
    min_y = min(offset, y.min())
    max_y = max(1, y.max())
    ii, jj = np.meshgrid(
        np.linspace(min_x - offset, max_x + offset, int(diagram_samples)),
        np.linspace(max_y + offset, min_y - offset, int(diagram_samples)))
    ij = np.dstack((ii, jj))
    ij[ij == 0] = offset

    ij2D = ij.reshape((diagram_samples**2, 2))
    ij2D = np.hstack((diagram_lightness * 100 * np.ones(
        (ij2D.shape[0], 1)), ij2D))
    xyz = colortf(ij2D, tf=cspace + '>xyz', tfa0=cspace_pars)

    xyz[xyz < 0] = 0
    xyz[np.isinf(xyz.sum(axis=1)), :] = np.nan
    xyz[np.isnan(xyz.sum(axis=1)), :] = offset

    srgb = xyz_to_srgb(xyz)
    srgb = srgb / srgb.max()
    srgb = srgb.reshape((diagram_samples, diagram_samples, 3))

    if show == True:
        if axh is None:
            fig = plt.figure()
            axh = fig.add_subplot(111)
        polygon = Polygon(SL, facecolor='none', edgecolor='none')
        axh.add_patch(polygon)
        image = axh.imshow(srgb,
                           interpolation='bilinear',
                           extent=(min_x, max_x, min_y - 0.05, max_y),
                           clip_path=None,
                           alpha=diagram_opacity)
        image.set_clip_path(polygon)
        axh.plot(x, y, color='darkgray')
        if (cspace == 'Yxy') & (isinstance(cieobs, str)):
            axh.set_xlim([0, 1])
            axh.set_ylim([0, 1])
        elif (cspace == 'Yuv') & (isinstance(cieobs, str)):
            axh.set_xlim([0, 0.6])
            axh.set_ylim([0, 0.6])
        if (cspace is not None):
            xlabel = _CSPACE_AXES[cspace][1]
            ylabel = _CSPACE_AXES[cspace][2]
            if (label_fontname is not None) & (label_fontsize is not None):
                axh.set_xlabel(xlabel,
                               fontname=label_fontname,
                               fontsize=label_fontsize)
                axh.set_ylabel(ylabel,
                               fontname=label_fontname,
                               fontsize=label_fontsize)

        if show_grid == True:
            axh.grid(True)
        #plt.show()

        return axh
    else:
        return None
Esempio n. 4
0
def apply_poly_model_at_hue_x(poly_model, pmodel, dCHoverC_res, \
                              hx = None, Cxr = 40, sig = _VF_SIG):
    """
    Applies base color shift model at (hue,chroma) coordinates
    
    Args:
        :poly_model: 
            | function handle to model
        :pmodel:
            | ndarray with model parameters.
        :dCHoverC_res:
            | ndarray with residuals between 'dCoverC,dH' of samples 
            | and 'dCoverC,dH' predicted by the model.
            | Note: dCoverC = (Ct - Cr)/Cr and dH = ht - hr 
            |      (predicted from model, see notes luxpy.cri.get_poly_model())
        :hx:
            | None or ndarray, optional
            | None defaults to np.arange(np.pi/10.0,2*np.pi,2*np.pi/10.0)
        :Cxr:
            | 40, optional
        :sig: 
            | _VF_SIG or float, optional
            | Determines smooth transition between hue-bin-boundaries (no hard 
            | cutoff at hue bin boundary).
        
    Returns:
        :returns: 
            | ndarrays with dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig
            | Note '_sig' denotes the uncertainty: 
            |     e.g.  dH_x_sig is the uncertainty of dH at input (hue/chroma).
    """

    if hx is None:
        dh = 2 * np.pi / 10.0
        hx = np.arange(
            dh / 2, 2 * np.pi, dh
        )  #hue angles at which to apply model, i.e. calculate 'average' measures

    # A calculate reference coordinates:
    axr = Cxr * np.cos(hx)
    bxr = Cxr * np.sin(hx)

    # B apply model at reference coordinates to obtain test coordinates:
    axt, bxt, Cxt, hxt, axr, bxr, Cxr, hxr = apply_poly_model_at_x(
        poly_model, pmodel, axr, bxr)

    # C Calculate dC/C, dH for test and ref at fixed hues:
    dCoverC_x = (Cxt - Cxr) / (np.hstack((Cxr + Cxt)).max())
    dH_x = (180 / np.pi) * (hxt - hxr)
    #    dCoverC_x = np.round(dCoverC_x,decimals = 2)
    #    dH_x = np.round(dH_x,decimals = 0)

    # D calculate 'average' noise measures using sig-value:
    href = dCHoverC_res[:, 0:1]
    dCoverC_res = dCHoverC_res[:, 1:2]
    dHoverC_res = dCHoverC_res[:, 2:3]
    dHsigi = np.exp((np.dstack(
        (np.abs(hx - href), np.abs((hx - href - 2 * np.pi)),
         np.abs(hx - href - 2 * np.pi))).min(axis=2)**2) / (-2) / sig)
    dH_x_sig = (180 / np.pi) * (np.sqrt(
        (dHsigi * (dHoverC_res**2)).sum(axis=0, keepdims=True) /
        dHsigi.sum(axis=0, keepdims=True)))
    #dH_x_sig_avg = np.sqrt(np.sum(dH_x_sig**2,axis=1)/hx.shape[0])
    dCoverC_x_sig = (np.sqrt(
        (dHsigi * (dCoverC_res**2)).sum(axis=0, keepdims=True) /
        dHsigi.sum(axis=0, keepdims=True)))
    #dCoverC_x_sig_avg = np.sqrt(np.sum(dCoverC_x_sig**2,axis=1)/hx.shape[0])

    return dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig
Esempio n. 5
0
def get_macadam_ellipse(xy = None, k_neighbours = 3, nsteps = 10, average_cik = True):
    """
    Estimate n-step MacAdam ellipse at CIE x,y coordinates xy by calculating 
    average inverse covariance ellipse of the k_neighbours closest ellipses.
    
    Args:
        :xy:
            | None or ndarray, optional
            | If None: output Macadam ellipses, if not None: xy are the 
            | CIE xy coordinates for which ellipses will be estimated.
        :k_neighbours:
            | 3, optional
            | Number of nearest ellipses to use to calculate ellipse at xy
        :nsteps:
            | 10, optional
            | Set number of MacAdam steps of ellipse.
        :average_cik:
            | True, optional
            | If True: take distance weighted average of inverse 
            |   'covariance ellipse' elements cik. 
            | If False: average major & minor axis lengths and 
            |   ellipse orientation angles directly.
            
    Returns:
        :v_mac_est:
            | estimated MacAdam ellipse(s) in v-format [Rmax,Rmin,xc,yc,theta]
    
    References:
        1. MacAdam DL. Visual Sensitivities to Color Differences in Daylight*. J Opt Soc Am. 1942;32(5):247-274.
    """
    # list of MacAdam ellipses (x10)
    v_mac = np.atleast_2d([
         [0.16, 0.057, 0.0085, 0.0035, 62.5],
         [0.187, 0.118, 0.022, 0.0055, 77],
         [0.253, 0.125, 0.025, 0.005, 55.5],
         [0.15, 0.68, 0.096, 0.023, 105],
         [0.131, 0.521, 0.047, 0.02, 112.5],
         [0.212, 0.55, 0.058, 0.023, 100],
         [0.258, 0.45, 0.05, 0.02, 92],
         [0.152, 0.365, 0.038, 0.019, 110],
         [0.28, 0.385, 0.04, 0.015, 75.5],
         [0.38, 0.498, 0.044, 0.012, 70],
         [0.16, 0.2, 0.021, 0.0095, 104],
         [0.228, 0.25, 0.031, 0.009, 72],
         [0.305, 0.323, 0.023, 0.009, 58],
         [0.385, 0.393, 0.038, 0.016, 65.5],
         [0.472, 0.399, 0.032, 0.014, 51],
         [0.527, 0.35, 0.026, 0.013, 20],
         [0.475, 0.3, 0.029, 0.011, 28.5],
         [0.51, 0.236, 0.024, 0.012, 29.5],
         [0.596, 0.283, 0.026, 0.013, 13],
         [0.344, 0.284, 0.023, 0.009, 60],
         [0.39, 0.237, 0.025, 0.01, 47],
         [0.441, 0.198, 0.028, 0.0095, 34.5],
         [0.278, 0.223, 0.024, 0.0055, 57.5],
         [0.3, 0.163, 0.029, 0.006, 54],
         [0.365, 0.153, 0.036, 0.0095, 40]
         ])
    
    # convert to v-format ([a,b, xc, yc, theta]):
    v_mac = v_mac[:,[2,3,0,1,4]]
    
    # convert last column to rad.:
    v_mac[:,-1] = v_mac[:,-1]*np.pi/180
    
    # convert to desired number of MacAdam-steps:
    v_mac[:,0:2] = v_mac[:,0:2]/10*nsteps
    
    if xy is not None:
        #calculate inverse covariance matrices:
        cik = math.v_to_cik(v_mac, inverse = True)
        if average_cik == True:
            cik_long = np.hstack((cik[:,0,:],cik[:,1,:]))
        
        # Calculate k_neighbours closest ellipses to xy:
        tree = sp.spatial.cKDTree(v_mac[:,2:4], copy_data = True)
        d, inds = tree.query(xy, k = k_neighbours)
    
        if k_neighbours  > 1:
            pd = 1
            w = (1.0 / np.abs(d)**pd)[:,:,None] # inverse distance weigthing
            if average_cik == True:
                cik_long_est = np.sum(w * cik_long[inds,:], axis=1) / np.sum(w, axis=1)
            else:
                v_mac_est = np.sum(w * v_mac[inds,:], axis=1) / np.sum(w, axis=1) # for average xyc

        else:
            v_mac_est = v_mac[inds,:].copy()
        
        # convert cik back to v:
        if (average_cik == True) & (k_neighbours >1):
            cik_est = np.dstack((cik_long_est[:,0:2],cik_long_est[:,2:4]))
            v_mac_est = math.cik_to_v(cik_est, inverse = True)
        v_mac_est[:,2:4] = xy
    else:
        v_mac_est = v_mac
        
    return v_mac_est
Esempio n. 6
0
def xyz_to_Ydlep(xyz,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 SL_max_lambda=None,
                 **kwargs):
    """
    Convert XYZ tristimulus values to Y, dominant (complementary) wavelength
    and excitation purity.

    Args:
        :xyz:
            | ndarray with tristimulus values
        :xyzw:
            | None or ndarray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
        :SL_max_lambda:
            | None or float, optional
            | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm)
    Returns:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
            |  and excitation purity
    """

    xyz3 = np3d(xyz).copy().astype(np.float)

    # flip axis so that shortest dim is on axis0 (save time in looping):
    if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        xyz3 = xyz3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyz to Yxy:
    Yxy = xyz_to_Yxy(xyz3)
    Yxyw = xyz_to_Yxy(xyzw)

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    SL = SL[:, SL[1:].sum(axis=0) >
            0]  # avoid div by zero in xyz-to-Yxy conversion
    wlsl = SL[0]
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # Get maximum wavelength of spectrum locus (before it turns back on itself)
    if SL_max_lambda is None:
        pmaxlambda = Yxysl[..., 1].argmax()  # lambda with largest x value
        dwl = np.diff(
            Yxysl[:, 0,
                  1])  # spectrumlocus in that range should have increasing x
        dwl[wlsl[:-1] < 600] = 10000
        pmaxlambda = np.where(
            dwl <= 0)[0][0]  # Take first element with zero or <zero slope
    else:
        pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin()
    Yxysl = Yxysl[:(pmaxlambda + 1), :]
    wlsl = wlsl[:(pmaxlambda + 1)]

    # center on xyzw:
    Yxy = Yxy - Yxyw
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, x, y = asplit(Yxy)
    Yw, xw, yw = asplit(Yxyw)
    Ysl, xsl, ysl = asplit(Yxysl)

    # calculate hue:
    h = math.positive_arctan(x, y, htype='deg')

    hsl = math.positive_arctan(xsl, ysl, htype='deg')

    hsl_max = hsl[0]  # max hue angle at min wavelength
    hsl_min = hsl[-1]  # min hue angle at max wavelength
    if hsl_min < hsl_max: hsl_min += 360

    dominantwavelength = np.empty(Y.shape)
    purity = np.empty(Y.shape)

    for i in range(xyz3.shape[1]):

        # find index of complementary wavelengths/hues:
        pc = np.where(
            (h[:, i] > hsl_max) & (h[:, i] < hsl_min)
        )  # hue's requiring complementary wavelength (purple line)
        h[:, i][pc] = h[:, i][pc] - np.sign(
            h[:, i][pc] - 180.0
        ) * 180.0  # add/subtract 180° to get positive complementary wavelength

        # find 2 closest enclosing hues in sl:
        #hslb,hib = meshblock(hsl,h[:,i:i+1])
        hib, hslb = np.meshgrid(h[:, i:i + 1], hsl)
        dh = (hslb - hib)
        q1 = np.abs(dh).argmin(axis=0)  # index of closest hue
        sign_q1 = np.sign(dh[q1])[0]
        dh[np.sign(dh) ==
           sign_q1] = 1000000  # set all dh on the same side as q1 to a very large value
        q2 = np.abs(dh).argmin(
            axis=0)  # index of second  closest (enclosing) hue

        # # Test changes to code:
        # print('wls',i, wlsl[q1],wlsl[q2])
        # import matplotlib.pyplot as plt
        # plt.figure()
        # plt.plot(wlsl[:-1],np.diff(xsl[:,0]),'k.-')
        # plt.figure()
        # plt.plot(x[0,i],y[0,i],'k.'); plt.plot(xsl,ysl,'r.-');plt.plot(xsl[q1],ysl[q1],'b.');plt.plot(xsl[q2],ysl[q2],'g.');plt.plot(xsl[-1],ysl[-1],'c+')

        dominantwavelength[:, i] = wlsl[q1] + np.multiply(
            (h[:, i] - hsl[q1, 0]),
            np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]))
        )  # calculate wl corresponding to h: y = y1 + (x-x1)*(y2-y1)/(x2-x1)
        dominantwavelength[:, i][pc] = -dominantwavelength[:, i][
            pc]  #complementary wavelengths are specified by '-' sign

        # calculate excitation purity:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate y of dom. wl
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to sl
        d = (x[:, i]**2.0 +
             y[:, i]**2.0)**0.5  # distance from white point to test point
        purity[:, i] = d / d_wl

        # correct for those test points that have a complementary wavelength
        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x[:, i], y[:, i])).T
        xyw = np.hstack((xw, yw))
        xypl1 = np.hstack((xsl[0, None], ysl[0, None]))
        xypl2 = np.hstack((xsl[-1, None], ysl[-1, None]))
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T  #[0]
        purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0]
    Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity))

    if axes12flipped == True:
        Ydlep = Ydlep.transpose((1, 0, 2))
    else:
        Ydlep = Ydlep.transpose((0, 1, 2))
    return Ydlep.reshape(xyz.shape)
Esempio n. 7
0
def xyz_to_Ydlep_(xyz,
                  cieobs=_CIEOBS,
                  xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                  flip_axes=False,
                  **kwargs):
    """
    Convert XYZ tristimulus values to Y, dominant (complementary) wavelength
    and excitation purity.

    Args:
        :xyz:
            | ndarray with tristimulus values
        :xyzw:
            | None or ndarray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
    Returns:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
            |  and excitation purity
    """

    xyz3 = np3d(xyz).copy().astype(np.float)

    # flip axis so that shortest dim is on axis0 (save time in looping):
    if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        xyz3 = xyz3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyz to Yxy:
    Yxy = xyz_to_Yxy(xyz3)
    Yxyw = xyz_to_Yxy(xyzw)

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    SL = SL[:, SL[1:].sum(axis=0) >
            0]  # avoid div by zero in xyz-to-Yxy conversion
    wlsl = SL[0]
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]
    pmaxlambda = Yxysl[..., 1].argmax()
    maxlambda = wlsl[pmaxlambda]
    maxlambda = 700
    print(np.where(wlsl == maxlambda))
    pmaxlambda = np.where(wlsl == maxlambda)[0][0]
    Yxysl = Yxysl[:(pmaxlambda + 1), :]
    wlsl = wlsl[:(pmaxlambda + 1)]

    # center on xyzw:
    Yxy = Yxy - Yxyw
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, x, y = asplit(Yxy)
    Yw, xw, yw = asplit(Yxyw)
    Ysl, xsl, ysl = asplit(Yxysl)

    # calculate hue:
    h = math.positive_arctan(x, y, htype='deg')
    print(h)
    print('rh', h[0, 0] - h[0, 1])
    print(wlsl[0], wlsl[-1])

    hsl = math.positive_arctan(xsl, ysl, htype='deg')

    hsl_max = hsl[0]  # max hue angle at min wavelength
    hsl_min = hsl[-1]  # min hue angle at max wavelength
    if hsl_min < hsl_max: hsl_min += 360

    dominantwavelength = np.empty(Y.shape)
    purity = np.empty(Y.shape)
    print('xyz:', xyz)
    for i in range(xyz3.shape[1]):
        print('\ni:', i, h[:, i], hsl_max, hsl_min)
        print(h)
        # find index of complementary wavelengths/hues:
        pc = np.where(
            (h[:, i] > hsl_max) & (h[:, i] < hsl_min)
        )  # hue's requiring complementary wavelength (purple line)
        print('pc', (h[:, i] > hsl_max) & (h[:, i] < hsl_min))
        h[:, i][pc] = h[:, i][pc] - np.sign(
            h[:, i][pc] - 180.0
        ) * 180.0  # add/subtract 180° to get positive complementary wavelength

        # find 2 closest hues in sl:
        #hslb,hib = meshblock(hsl,h[:,i:i+1])
        hib, hslb = np.meshgrid(h[:, i:i + 1], hsl)
        dh = np.abs(hslb - hib)
        q1 = dh.argmin(axis=0)  # index of closest hue
        dh[q1] = 1000000.0
        q2 = dh.argmin(axis=0)  # index of second closest hue
        print('q1q2', q2, q1)

        print('wls:', h[:, i], wlsl[q1], wlsl[q2])
        print('hsls:', hsl[q2, 0], hsl[q1, 0])
        print('d', (wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]),
              (wlsl[q2] - wlsl[q1]) / (hsl[q2, 0] - hsl[q1, 0]))
        print('(h[:,i] - hsl[q1,0])', (h[:, i] - hsl[q1, 0]))
        print('div', np.divide((wlsl[q2] - wlsl[q1]),
                               (hsl[q2, 0] - hsl[q1, 0])))
        print(
            'mult(...)',
            np.multiply((h[:, i] - hsl[q1, 0]),
                        np.divide((wlsl[q2] - wlsl[q1]),
                                  (hsl[q2, 0] - hsl[q1, 0]))))
        dominantwavelength[:, i] = wlsl[q1] + np.multiply(
            (h[:, i] - hsl[q1, 0]),
            np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]))
        )  # calculate wl corresponding to h: y = y1 + (x-x1)*(y2-y1)/(x2-x1)
        print('dom', dominantwavelength[:, i])
        dominantwavelength[(dominantwavelength[:,
                                               i] > max(wlsl[q1], wlsl[q2])),
                           i] = max(wlsl[q1], wlsl[q2])
        dominantwavelength[(dominantwavelength[:,
                                               i] < min(wlsl[q1], wlsl[q2])),
                           i] = min(wlsl[q1], wlsl[q2])

        dominantwavelength[:, i][pc] = -dominantwavelength[:, i][
            pc]  #complementary wavelengths are specified by '-' sign

        # calculate excitation purity:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate y of dom. wl
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to sl
        d = (x[:, i]**2.0 +
             y[:, i]**2.0)**0.5  # distance from white point to test point
        purity[:, i] = d / d_wl

        # correct for those test points that have a complementary wavelength
        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x[:, i], y[:, i])).T
        xyw = np.hstack((xw, yw))
        xypl1 = np.hstack((xsl[0, None], ysl[0, None]))
        xypl2 = np.hstack((xsl[-1, None], ysl[-1, None]))
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T  #[0]
        purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0]
    Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity))

    if axes12flipped == True:
        Ydlep = Ydlep.transpose((1, 0, 2))
    else:
        Ydlep = Ydlep.transpose((0, 1, 2))
    return Ydlep.reshape(xyz.shape)
Esempio n. 8
0
def Ydlep_to_xyz(Ydlep,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 SL_max_lambda=None,
                 **kwargs):
    """
    Convert Y, dominant (complementary) wavelength and excitation purity to XYZ
    tristimulus values.

    Args:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
              and excitation purity
        :xyzw: 
            | None or narray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
        :SL_max_lambda:
            | None or float, optional
            | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm)

    Returns:
        :xyz: 
            | ndarray with tristimulus values
    """

    Ydlep3 = np3d(Ydlep).copy().astype(np.float)

    # flip axis so that longest dim is on first axis  (save time in looping):
    if (Ydlep3.shape[0] < Ydlep3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        Ydlep3 = Ydlep3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyzw to Yxyw:
    Yxyw = xyz_to_Yxy(xyzw)
    Yxywo = Yxyw.copy()

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    SL = SL[:, SL[1:].sum(axis=0) >
            0]  # avoid div by zero in xyz-to-Yxy conversion
    wlsl = SL[0, None].T
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # Get maximum wavelength of spectrum locus (before it turns back on itself)
    if SL_max_lambda is None:
        pmaxlambda = Yxysl[..., 1].argmax()  # lambda with largest x value
        dwl = np.diff(
            Yxysl[:, 0,
                  1])  # spectrumlocus in that range should have increasing x
        dwl[wlsl[:-1, 0] < 600] = 10000
        pmaxlambda = np.where(
            dwl <= 0)[0][0]  # Take first element with zero or <zero slope
    else:
        pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin()
    Yxysl = Yxysl[:(pmaxlambda + 1), :]
    wlsl = wlsl[:(pmaxlambda + 1), :1]

    # center on xyzw:
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, dom, pur = asplit(Ydlep3)
    Yw, xw, yw = asplit(Yxyw)
    Ywo, xwo, ywo = asplit(Yxywo)
    Ysl, xsl, ysl = asplit(Yxysl)

    # loop over longest dim:
    x = np.empty(Y.shape)
    y = np.empty(Y.shape)
    for i in range(Ydlep3.shape[1]):

        # find closest wl's to dom:
        #wlslb,wlib = meshblock(wlsl,np.abs(dom[i,:])) #abs because dom<0--> complemtary wl
        wlib, wlslb = np.meshgrid(np.abs(dom[:, i]), wlsl)

        dwl = wlslb - wlib
        q1 = np.abs(dwl).argmin(axis=0)  # index of closest wl
        sign_q1 = np.sign(dwl[q1])
        dwl[np.sign(dwl) ==
            sign_q1] = 1000000  # set all dwl on the same side as q1 to a very large value
        q2 = np.abs(dwl).argmin(
            axis=0)  # index of second closest (enclosing) wl

        # calculate x,y of dom:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate y of dom. wl

        # calculate x,y of test:
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to dom
        d = pur[:, i] * d_wl
        hdom = math.positive_arctan(x_dom_wl, y_dom_wl, htype='deg')
        x[:, i] = d * np.cos(hdom * np.pi / 180.0)
        y[:, i] = d * np.sin(hdom * np.pi / 180.0)

        # complementary:
        pc = np.where(dom[:, i] < 0.0)
        hdom[pc] = hdom[pc] - np.sign(dom[:, i][pc] -
                                      180.0) * 180.0  # get positive hue angle

        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x_dom_wl, y_dom_wl)).T
        xyw = np.vstack((xw, yw)).T
        xypl1 = np.vstack((xsl[0, None], ysl[0, None])).T
        xypl2 = np.vstack((xsl[-1, None], ysl[-1, None])).T
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T[:, 0]
        x[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.cos(
            hdom[pc] * np.pi / 180)
        y[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.sin(
            hdom[pc] * np.pi / 180)
    Yxy = np.dstack((Ydlep3[:, :, 0], x + xwo, y + ywo))
    if axes12flipped == True:
        Yxy = Yxy.transpose((1, 0, 2))
    else:
        Yxy = Yxy.transpose((0, 1, 2))
    return Yxy_to_xyz(Yxy).reshape(Ydlep.shape)