def _xyz_to_jab_cam02ucs(xyz, xyzw, ucs=True, conditions=None): """ Calculate CAM02-UCS J'a'b' coordinates from xyz tristimulus values of sample and white point. Args: :xyz: | ndarray with sample tristimulus values :xyzw: | ndarray with white point tristimulus values :conditions: | None, optional | Dictionary with viewing conditions. | None results in: | {'La':100, 'Yb':20, 'D':1, 'surround':'avg'} | For more info see luxpy.cam.ciecam02()? Returns: :jab: | ndarray with J'a'b' coordinates. """ #-------------------------------------------- # Get/ set conditions parameters: if conditions is not None: surround_parameters = { 'surrounds': ['avg', 'dim', 'dark'], 'avg': { 'c': 0.69, 'Nc': 1.0, 'F': 1.0, 'FLL': 1.0 }, 'dim': { 'c': 0.59, 'Nc': 0.9, 'F': 0.9, 'FLL': 1.0 }, 'dark': { 'c': 0.525, 'Nc': 0.8, 'F': 0.8, 'FLL': 1.0 } } La = conditions['La'] Yb = conditions['Yb'] D = conditions['D'] surround = conditions['surround'] if isinstance(surround, str): surround = surround_parameters[conditions['surround']] F, FLL, Nc, c = [surround[x] for x in sorted(surround.keys())] else: # set defaults: La, Yb, D, F, FLL, Nc, c = 100, 20, 1, 1, 1, 1, 0.69 #-------------------------------------------- # Define sensor space and cat matrices: mhpe = np.array([[0.38971, 0.68898, -0.07868], [-0.22981, 1.1834, 0.04641], [0.0, 0.0, 1.0] ]) # Hunt-Pointer-Estevez sensors (cone fundamentals) mcat = np.array([[0.7328, 0.4296, -0.1624], [-0.7036, 1.6975, 0.0061], [0.0030, 0.0136, 0.9834]]) # CAT02 sensor space #-------------------------------------------- # pre-calculate some matrices: invmcat = np.linalg.inv(mcat) mhpe_x_invmcat = np.dot(mhpe, invmcat) #-------------------------------------------- # calculate condition dependent parameters: Yw = xyzw[..., 1:2].T k = 1.0 / (5.0 * La + 1.0) FL = 0.2 * (k**4.0) * (5.0 * La) + 0.1 * ((1.0 - k**4.0)**2.0) * ( (5.0 * La)**(1.0 / 3.0)) # luminance adaptation factor n = Yb / Yw Nbb = 0.725 * (1 / n)**0.2 Ncb = Nbb z = 1.48 + FLL * n**0.5 if D is None: D = F * (1.0 - (1.0 / 3.6) * np.exp((-La - 42.0) / 92.0)) #-------------------------------------------- # transform from xyz, xyzw to cat sensor space: rgb = math.dot23(mcat, xyz.T) rgbw = mcat @ xyzw.T #-------------------------------------------- # apply von Kries cat: rgbc = ( (D * Yw / rgbw)[..., None] + (1 - D) ) * rgb # factor 100 from ciecam02 is replaced with Yw[i] in ciecam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.) rgbwc = ( (D * Yw / rgbw) + (1 - D) ) * rgbw # factor 100 from ciecam02 is replaced with Yw[i] in ciecam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.) #-------------------------------------------- # convert from cat02 sensor space to cone sensors (hpe): rgbp = math.dot23(mhpe_x_invmcat, rgbc).T rgbwp = (mhpe_x_invmcat @ rgbwc).T #-------------------------------------------- # apply Naka_rushton repsonse compression: naka_rushton = lambda x: 400 * x**0.42 / (x**0.42 + 27.13) + 0.1 rgbpa = naka_rushton(FL * rgbp / 100.0) p = np.where(rgbp < 0) rgbpa[p] = 0.1 - (naka_rushton(FL * np.abs(rgbp[p]) / 100.0) - 0.1) rgbwpa = naka_rushton(FL * rgbwp / 100.0) pw = np.where(rgbwp < 0) rgbwpa[pw] = 0.1 - (naka_rushton(FL * np.abs(rgbwp[pw]) / 100.0) - 0.1) #-------------------------------------------- # Calculate achromatic signal: A = (2.0 * rgbpa[..., 0] + rgbpa[..., 1] + (1.0 / 20.0) * rgbpa[..., 2] - 0.305) * Nbb Aw = (2.0 * rgbwpa[..., 0] + rgbwpa[..., 1] + (1.0 / 20.0) * rgbwpa[..., 2] - 0.305) * Nbb #-------------------------------------------- # calculate initial opponent channels: a = rgbpa[..., 0] - 12.0 * rgbpa[..., 1] / 11.0 + rgbpa[..., 2] / 11.0 b = (1.0 / 9.0) * (rgbpa[..., 0] + rgbpa[..., 1] - 2.0 * rgbpa[..., 2]) #-------------------------------------------- # calculate hue h and eccentricity factor, et: h = np.arctan2(b, a) et = (1.0 / 4.0) * (np.cos(h + 2.0) + 3.8) #-------------------------------------------- # calculate lightness, J: J = 100.0 * (A / Aw)**(c * z) #-------------------------------------------- # calculate chroma, C: t = ((50000.0 / 13.0) * Nc * Ncb * et * ((a**2.0 + b**2.0)**0.5)) / (rgbpa[..., 0] + rgbpa[..., 1] + (21.0 / 20.0 * rgbpa[..., 2])) C = (t**0.9) * ((J / 100.0)**0.5) * (1.64 - 0.29**n)**0.73 #-------------------------------------------- # Calculate colorfulness, M: M = C * FL**0.25 #-------------------------------------------- # convert to cam02ucs J', aM', bM': if ucs == True: KL, c1, c2 = 1.0, 0.007, 0.0228 Jp = (1.0 + 100.0 * c1) * J / (1.0 + c1 * J) Mp = (1.0 / c2) * np.log(1.0 + c2 * M) else: Jp = J Mp = M aMp = Mp * np.cos(h) bMp = Mp * np.sin(h) return np.dstack((Jp, aMp, bMp))
def generate_grid(jab_ranges = None, out = 'grid', \ ax = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR),\ bx = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), \ jx = None, limit_grid_radius = 0): """ Generate a grid of color coordinates. Args: :out: | 'grid' or 'vectors', optional | - 'grid': outputs a single 2d numpy.nd-vector with the grid coordinates | - 'vector': outputs each dimension seperately. :jab_ranges: | None or ndarray, optional | Specifies the pixelization of color space. | (ndarray.shape = (3,3), with first axis: J,a,b, and second | axis: min, max, delta) :ax: | default ndarray or user defined ndarray, optional | default = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR) :bx: | default ndarray or user defined ndarray, optional | default = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR) :jx: | None, optional | Note that not-None :jab_ranges: override :ax:, :bx: and :jx input. :limit_grid_radius: | 0, optional | A value of zeros keeps grid as specified by axr,bxr. | A value > 0 only keeps (a,b) coordinates within :limit_grid_radius: Returns: :returns: | single ndarray with ax,bx [,jx] | or | seperate ndarrays for each dimension specified. """ # generate grid from jab_ranges array input, otherwise use ax, bx, jx input: if jab_ranges is not None: if jab_ranges.shape[0] == 3: jx = np.arange(jab_ranges[0][0], jab_ranges[0][1], jab_ranges[0][2]) ax = np.arange(jab_ranges[1][0], jab_ranges[1][1], jab_ranges[1][2]) bx = np.arange(jab_ranges[2][0], jab_ranges[2][1], jab_ranges[2][2]) else: jx = None ax = np.arange(jab_ranges[0][0], jab_ranges[0][1], jab_ranges[0][2]) bx = np.arange(jab_ranges[1][0], jab_ranges[1][1], jab_ranges[1][2]) # Generate grid from (jx), ax, bx: Ax, Bx = np.meshgrid(ax, bx) grid = np.dstack((Ax, Bx)) grid = np.reshape(grid, (np.array(grid.shape[:-1]).prod(), grid.ndim - 1)) if jx is not None: for i, v in enumerate(jx): gridi = np.hstack((np.ones((grid.shape[0], 1)) * v, grid)) if i == 0: gridwithJ = gridi else: gridwithJ = np.vstack((gridwithJ, gridi)) grid = gridwithJ if jx is None: ax = grid[:, 0:1] bx = grid[:, 1:2] else: jx = grid[:, 0:1] ax = grid[:, 1:2] bx = grid[:, 2:3] if limit_grid_radius > 0: # limit radius of grid: Cr = (ax**2 + bx**2)**0.5 ax = ax[Cr <= limit_grid_radius, None] bx = bx[Cr <= limit_grid_radius, None] if jx is not None: jx = jx[Cr <= limit_grid_radius, None] # create output: if out == 'grid': if jx is None: return np.hstack((ax, bx)) else: return np.hstack((jx, ax, bx)) else: if jx is None: return ax, bx else: return jx, ax, bx
def plot_chromaticity_diagram_colors(diagram_samples = 256, diagram_opacity = 1.0, diagram_lightness = 0.25,\ cieobs = _CIEOBS, cspace = 'Yxy', cspace_pars = {},\ show = True, axh = None,\ show_grid = False, label_fontname = 'Times New Roman', label_fontsize = 12,\ **kwargs): """ Plot the chromaticity diagram colors. Args: :diagram_samples: | 256, optional | Sampling resolution of color space. :diagram_opacity: | 1.0, optional | Sets opacity of chromaticity diagram :diagram_lightness: | 0.25, optional | Sets lightness of chromaticity diagram :axh: | None or axes handle, optional | Determines axes to plot data in. | None: make new figure. :show: | True or False, optional | Invoke matplotlib.pyplot.show() right after plotting :cieobs: | luxpy._CIEOBS or str, optional | Determines CMF set to calculate spectrum locus or other. :cspace: | luxpy._CSPACE or str, optional | Determines color space / chromaticity diagram to plot data in. | Note that data is expected to be in specified :cspace: :cspace_pars: | {} or dict, optional | Dict with parameters required by color space specified in :cspace: | (for use with luxpy.colortf()) :show_grid: | False, optional | Show grid (True) or not (False) :label_fontname: | 'Times New Roman', optional | Sets font type of axis labels. :label_fontsize: | 12, optional | Sets font size of axis labels. :kwargs: | additional keyword arguments for use with matplotlib.pyplot. Returns: """ if isinstance(cieobs, str): SL = _CMF[cieobs]['bar'][1:4].T else: SL = cieobs[1:4].T SL = 100.0 * SL / (SL[:, 1, None] + _EPS) SL = SL[SL.sum(axis=1) > 0, :] # avoid div by zero in xyz-to-Yxy conversion SL = colortf(SL, tf=cspace, tfa0=cspace_pars) plambdamax = SL[:, 1].argmax() SL = np.vstack( (SL[:(plambdamax + 1), :], SL[0]) ) # add lowest wavelength data and go to max of gamut in x (there is a reversal for some cmf set wavelengths >~700 nm!) Y, x, y = asplit(SL) SL = np.vstack((x, y)).T # create grid for conversion to srgb offset = _EPS min_x = min(offset, x.min()) max_x = max(1, x.max()) min_y = min(offset, y.min()) max_y = max(1, y.max()) ii, jj = np.meshgrid( np.linspace(min_x - offset, max_x + offset, int(diagram_samples)), np.linspace(max_y + offset, min_y - offset, int(diagram_samples))) ij = np.dstack((ii, jj)) ij[ij == 0] = offset ij2D = ij.reshape((diagram_samples**2, 2)) ij2D = np.hstack((diagram_lightness * 100 * np.ones( (ij2D.shape[0], 1)), ij2D)) xyz = colortf(ij2D, tf=cspace + '>xyz', tfa0=cspace_pars) xyz[xyz < 0] = 0 xyz[np.isinf(xyz.sum(axis=1)), :] = np.nan xyz[np.isnan(xyz.sum(axis=1)), :] = offset srgb = xyz_to_srgb(xyz) srgb = srgb / srgb.max() srgb = srgb.reshape((diagram_samples, diagram_samples, 3)) if show == True: if axh is None: fig = plt.figure() axh = fig.add_subplot(111) polygon = Polygon(SL, facecolor='none', edgecolor='none') axh.add_patch(polygon) image = axh.imshow(srgb, interpolation='bilinear', extent=(min_x, max_x, min_y - 0.05, max_y), clip_path=None, alpha=diagram_opacity) image.set_clip_path(polygon) axh.plot(x, y, color='darkgray') if (cspace == 'Yxy') & (isinstance(cieobs, str)): axh.set_xlim([0, 1]) axh.set_ylim([0, 1]) elif (cspace == 'Yuv') & (isinstance(cieobs, str)): axh.set_xlim([0, 0.6]) axh.set_ylim([0, 0.6]) if (cspace is not None): xlabel = _CSPACE_AXES[cspace][1] ylabel = _CSPACE_AXES[cspace][2] if (label_fontname is not None) & (label_fontsize is not None): axh.set_xlabel(xlabel, fontname=label_fontname, fontsize=label_fontsize) axh.set_ylabel(ylabel, fontname=label_fontname, fontsize=label_fontsize) if show_grid == True: axh.grid(True) #plt.show() return axh else: return None
def apply_poly_model_at_hue_x(poly_model, pmodel, dCHoverC_res, \ hx = None, Cxr = 40, sig = _VF_SIG): """ Applies base color shift model at (hue,chroma) coordinates Args: :poly_model: | function handle to model :pmodel: | ndarray with model parameters. :dCHoverC_res: | ndarray with residuals between 'dCoverC,dH' of samples | and 'dCoverC,dH' predicted by the model. | Note: dCoverC = (Ct - Cr)/Cr and dH = ht - hr | (predicted from model, see notes luxpy.cri.get_poly_model()) :hx: | None or ndarray, optional | None defaults to np.arange(np.pi/10.0,2*np.pi,2*np.pi/10.0) :Cxr: | 40, optional :sig: | _VF_SIG or float, optional | Determines smooth transition between hue-bin-boundaries (no hard | cutoff at hue bin boundary). Returns: :returns: | ndarrays with dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig | Note '_sig' denotes the uncertainty: | e.g. dH_x_sig is the uncertainty of dH at input (hue/chroma). """ if hx is None: dh = 2 * np.pi / 10.0 hx = np.arange( dh / 2, 2 * np.pi, dh ) #hue angles at which to apply model, i.e. calculate 'average' measures # A calculate reference coordinates: axr = Cxr * np.cos(hx) bxr = Cxr * np.sin(hx) # B apply model at reference coordinates to obtain test coordinates: axt, bxt, Cxt, hxt, axr, bxr, Cxr, hxr = apply_poly_model_at_x( poly_model, pmodel, axr, bxr) # C Calculate dC/C, dH for test and ref at fixed hues: dCoverC_x = (Cxt - Cxr) / (np.hstack((Cxr + Cxt)).max()) dH_x = (180 / np.pi) * (hxt - hxr) # dCoverC_x = np.round(dCoverC_x,decimals = 2) # dH_x = np.round(dH_x,decimals = 0) # D calculate 'average' noise measures using sig-value: href = dCHoverC_res[:, 0:1] dCoverC_res = dCHoverC_res[:, 1:2] dHoverC_res = dCHoverC_res[:, 2:3] dHsigi = np.exp((np.dstack( (np.abs(hx - href), np.abs((hx - href - 2 * np.pi)), np.abs(hx - href - 2 * np.pi))).min(axis=2)**2) / (-2) / sig) dH_x_sig = (180 / np.pi) * (np.sqrt( (dHsigi * (dHoverC_res**2)).sum(axis=0, keepdims=True) / dHsigi.sum(axis=0, keepdims=True))) #dH_x_sig_avg = np.sqrt(np.sum(dH_x_sig**2,axis=1)/hx.shape[0]) dCoverC_x_sig = (np.sqrt( (dHsigi * (dCoverC_res**2)).sum(axis=0, keepdims=True) / dHsigi.sum(axis=0, keepdims=True))) #dCoverC_x_sig_avg = np.sqrt(np.sum(dCoverC_x_sig**2,axis=1)/hx.shape[0]) return dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig
def get_macadam_ellipse(xy = None, k_neighbours = 3, nsteps = 10, average_cik = True): """ Estimate n-step MacAdam ellipse at CIE x,y coordinates xy by calculating average inverse covariance ellipse of the k_neighbours closest ellipses. Args: :xy: | None or ndarray, optional | If None: output Macadam ellipses, if not None: xy are the | CIE xy coordinates for which ellipses will be estimated. :k_neighbours: | 3, optional | Number of nearest ellipses to use to calculate ellipse at xy :nsteps: | 10, optional | Set number of MacAdam steps of ellipse. :average_cik: | True, optional | If True: take distance weighted average of inverse | 'covariance ellipse' elements cik. | If False: average major & minor axis lengths and | ellipse orientation angles directly. Returns: :v_mac_est: | estimated MacAdam ellipse(s) in v-format [Rmax,Rmin,xc,yc,theta] References: 1. MacAdam DL. Visual Sensitivities to Color Differences in Daylight*. J Opt Soc Am. 1942;32(5):247-274. """ # list of MacAdam ellipses (x10) v_mac = np.atleast_2d([ [0.16, 0.057, 0.0085, 0.0035, 62.5], [0.187, 0.118, 0.022, 0.0055, 77], [0.253, 0.125, 0.025, 0.005, 55.5], [0.15, 0.68, 0.096, 0.023, 105], [0.131, 0.521, 0.047, 0.02, 112.5], [0.212, 0.55, 0.058, 0.023, 100], [0.258, 0.45, 0.05, 0.02, 92], [0.152, 0.365, 0.038, 0.019, 110], [0.28, 0.385, 0.04, 0.015, 75.5], [0.38, 0.498, 0.044, 0.012, 70], [0.16, 0.2, 0.021, 0.0095, 104], [0.228, 0.25, 0.031, 0.009, 72], [0.305, 0.323, 0.023, 0.009, 58], [0.385, 0.393, 0.038, 0.016, 65.5], [0.472, 0.399, 0.032, 0.014, 51], [0.527, 0.35, 0.026, 0.013, 20], [0.475, 0.3, 0.029, 0.011, 28.5], [0.51, 0.236, 0.024, 0.012, 29.5], [0.596, 0.283, 0.026, 0.013, 13], [0.344, 0.284, 0.023, 0.009, 60], [0.39, 0.237, 0.025, 0.01, 47], [0.441, 0.198, 0.028, 0.0095, 34.5], [0.278, 0.223, 0.024, 0.0055, 57.5], [0.3, 0.163, 0.029, 0.006, 54], [0.365, 0.153, 0.036, 0.0095, 40] ]) # convert to v-format ([a,b, xc, yc, theta]): v_mac = v_mac[:,[2,3,0,1,4]] # convert last column to rad.: v_mac[:,-1] = v_mac[:,-1]*np.pi/180 # convert to desired number of MacAdam-steps: v_mac[:,0:2] = v_mac[:,0:2]/10*nsteps if xy is not None: #calculate inverse covariance matrices: cik = math.v_to_cik(v_mac, inverse = True) if average_cik == True: cik_long = np.hstack((cik[:,0,:],cik[:,1,:])) # Calculate k_neighbours closest ellipses to xy: tree = sp.spatial.cKDTree(v_mac[:,2:4], copy_data = True) d, inds = tree.query(xy, k = k_neighbours) if k_neighbours > 1: pd = 1 w = (1.0 / np.abs(d)**pd)[:,:,None] # inverse distance weigthing if average_cik == True: cik_long_est = np.sum(w * cik_long[inds,:], axis=1) / np.sum(w, axis=1) else: v_mac_est = np.sum(w * v_mac[inds,:], axis=1) / np.sum(w, axis=1) # for average xyc else: v_mac_est = v_mac[inds,:].copy() # convert cik back to v: if (average_cik == True) & (k_neighbours >1): cik_est = np.dstack((cik_long_est[:,0:2],cik_long_est[:,2:4])) v_mac_est = math.cik_to_v(cik_est, inverse = True) v_mac_est[:,2:4] = xy else: v_mac_est = v_mac return v_mac_est
def xyz_to_Ydlep(xyz, cieobs=_CIEOBS, xyzw=_COLORTF_DEFAULT_WHITE_POINT, flip_axes=False, SL_max_lambda=None, **kwargs): """ Convert XYZ tristimulus values to Y, dominant (complementary) wavelength and excitation purity. Args: :xyz: | ndarray with tristimulus values :xyzw: | None or ndarray with tristimulus values of a single (!) native white point, optional | None defaults to xyz of CIE D65 using the :cieobs: observer. :cieobs: | luxpy._CIEOBS, optional | CMF set to use when calculating spectrum locus coordinates. :flip_axes: | False, optional | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function. | (single xyzw with is not flipped!) :SL_max_lambda: | None or float, optional | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm) Returns: :Ydlep: | ndarray with Y, dominant (complementary) wavelength | and excitation purity """ xyz3 = np3d(xyz).copy().astype(np.float) # flip axis so that shortest dim is on axis0 (save time in looping): if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True): axes12flipped = True xyz3 = xyz3.transpose((1, 0, 2)) else: axes12flipped = False # convert xyz to Yxy: Yxy = xyz_to_Yxy(xyz3) Yxyw = xyz_to_Yxy(xyzw) # get spectrum locus Y,x,y and wavelengths: SL = _CMF[cieobs]['bar'] SL = SL[:, SL[1:].sum(axis=0) > 0] # avoid div by zero in xyz-to-Yxy conversion wlsl = SL[0] Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None] # Get maximum wavelength of spectrum locus (before it turns back on itself) if SL_max_lambda is None: pmaxlambda = Yxysl[..., 1].argmax() # lambda with largest x value dwl = np.diff( Yxysl[:, 0, 1]) # spectrumlocus in that range should have increasing x dwl[wlsl[:-1] < 600] = 10000 pmaxlambda = np.where( dwl <= 0)[0][0] # Take first element with zero or <zero slope else: pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin() Yxysl = Yxysl[:(pmaxlambda + 1), :] wlsl = wlsl[:(pmaxlambda + 1)] # center on xyzw: Yxy = Yxy - Yxyw Yxysl = Yxysl - Yxyw Yxyw = Yxyw - Yxyw #split: Y, x, y = asplit(Yxy) Yw, xw, yw = asplit(Yxyw) Ysl, xsl, ysl = asplit(Yxysl) # calculate hue: h = math.positive_arctan(x, y, htype='deg') hsl = math.positive_arctan(xsl, ysl, htype='deg') hsl_max = hsl[0] # max hue angle at min wavelength hsl_min = hsl[-1] # min hue angle at max wavelength if hsl_min < hsl_max: hsl_min += 360 dominantwavelength = np.empty(Y.shape) purity = np.empty(Y.shape) for i in range(xyz3.shape[1]): # find index of complementary wavelengths/hues: pc = np.where( (h[:, i] > hsl_max) & (h[:, i] < hsl_min) ) # hue's requiring complementary wavelength (purple line) h[:, i][pc] = h[:, i][pc] - np.sign( h[:, i][pc] - 180.0 ) * 180.0 # add/subtract 180° to get positive complementary wavelength # find 2 closest enclosing hues in sl: #hslb,hib = meshblock(hsl,h[:,i:i+1]) hib, hslb = np.meshgrid(h[:, i:i + 1], hsl) dh = (hslb - hib) q1 = np.abs(dh).argmin(axis=0) # index of closest hue sign_q1 = np.sign(dh[q1])[0] dh[np.sign(dh) == sign_q1] = 1000000 # set all dh on the same side as q1 to a very large value q2 = np.abs(dh).argmin( axis=0) # index of second closest (enclosing) hue # # Test changes to code: # print('wls',i, wlsl[q1],wlsl[q2]) # import matplotlib.pyplot as plt # plt.figure() # plt.plot(wlsl[:-1],np.diff(xsl[:,0]),'k.-') # plt.figure() # plt.plot(x[0,i],y[0,i],'k.'); plt.plot(xsl,ysl,'r.-');plt.plot(xsl[q1],ysl[q1],'b.');plt.plot(xsl[q2],ysl[q2],'g.');plt.plot(xsl[-1],ysl[-1],'c+') dominantwavelength[:, i] = wlsl[q1] + np.multiply( (h[:, i] - hsl[q1, 0]), np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0])) ) # calculate wl corresponding to h: y = y1 + (x-x1)*(y2-y1)/(x2-x1) dominantwavelength[:, i][pc] = -dominantwavelength[:, i][ pc] #complementary wavelengths are specified by '-' sign # calculate excitation purity: x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[ q1, 0]) / (hsl[q2, 0] - hsl[q1, 0]) # calculate x of dom. wl y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[ q1, 0]) / (hsl[q2, 0] - hsl[q1, 0]) # calculate y of dom. wl d_wl = (x_dom_wl**2.0 + y_dom_wl**2.0)**0.5 # distance from white point to sl d = (x[:, i]**2.0 + y[:, i]**2.0)**0.5 # distance from white point to test point purity[:, i] = d / d_wl # correct for those test points that have a complementary wavelength # calculate intersection of line through white point and test point and purple line: xy = np.vstack((x[:, i], y[:, i])).T xyw = np.hstack((xw, yw)) xypl1 = np.hstack((xsl[0, None], ysl[0, None])) xypl2 = np.hstack((xsl[-1, None], ysl[-1, None])) da = (xy - xyw) db = (xypl2 - xypl1) dp = (xyw - xypl1) T = np.array([[0.0, -1.0], [1.0, 0.0]]) dap = np.dot(da, T) denom = np.sum(dap * db, axis=1, keepdims=True) num = np.sum(dap * dp, axis=1, keepdims=True) xy_linecross = (num / denom) * db + xypl1 d_linecross = np.atleast_2d( (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T #[0] purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0] Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity)) if axes12flipped == True: Ydlep = Ydlep.transpose((1, 0, 2)) else: Ydlep = Ydlep.transpose((0, 1, 2)) return Ydlep.reshape(xyz.shape)
def xyz_to_Ydlep_(xyz, cieobs=_CIEOBS, xyzw=_COLORTF_DEFAULT_WHITE_POINT, flip_axes=False, **kwargs): """ Convert XYZ tristimulus values to Y, dominant (complementary) wavelength and excitation purity. Args: :xyz: | ndarray with tristimulus values :xyzw: | None or ndarray with tristimulus values of a single (!) native white point, optional | None defaults to xyz of CIE D65 using the :cieobs: observer. :cieobs: | luxpy._CIEOBS, optional | CMF set to use when calculating spectrum locus coordinates. :flip_axes: | False, optional | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function. | (single xyzw with is not flipped!) Returns: :Ydlep: | ndarray with Y, dominant (complementary) wavelength | and excitation purity """ xyz3 = np3d(xyz).copy().astype(np.float) # flip axis so that shortest dim is on axis0 (save time in looping): if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True): axes12flipped = True xyz3 = xyz3.transpose((1, 0, 2)) else: axes12flipped = False # convert xyz to Yxy: Yxy = xyz_to_Yxy(xyz3) Yxyw = xyz_to_Yxy(xyzw) # get spectrum locus Y,x,y and wavelengths: SL = _CMF[cieobs]['bar'] SL = SL[:, SL[1:].sum(axis=0) > 0] # avoid div by zero in xyz-to-Yxy conversion wlsl = SL[0] Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None] pmaxlambda = Yxysl[..., 1].argmax() maxlambda = wlsl[pmaxlambda] maxlambda = 700 print(np.where(wlsl == maxlambda)) pmaxlambda = np.where(wlsl == maxlambda)[0][0] Yxysl = Yxysl[:(pmaxlambda + 1), :] wlsl = wlsl[:(pmaxlambda + 1)] # center on xyzw: Yxy = Yxy - Yxyw Yxysl = Yxysl - Yxyw Yxyw = Yxyw - Yxyw #split: Y, x, y = asplit(Yxy) Yw, xw, yw = asplit(Yxyw) Ysl, xsl, ysl = asplit(Yxysl) # calculate hue: h = math.positive_arctan(x, y, htype='deg') print(h) print('rh', h[0, 0] - h[0, 1]) print(wlsl[0], wlsl[-1]) hsl = math.positive_arctan(xsl, ysl, htype='deg') hsl_max = hsl[0] # max hue angle at min wavelength hsl_min = hsl[-1] # min hue angle at max wavelength if hsl_min < hsl_max: hsl_min += 360 dominantwavelength = np.empty(Y.shape) purity = np.empty(Y.shape) print('xyz:', xyz) for i in range(xyz3.shape[1]): print('\ni:', i, h[:, i], hsl_max, hsl_min) print(h) # find index of complementary wavelengths/hues: pc = np.where( (h[:, i] > hsl_max) & (h[:, i] < hsl_min) ) # hue's requiring complementary wavelength (purple line) print('pc', (h[:, i] > hsl_max) & (h[:, i] < hsl_min)) h[:, i][pc] = h[:, i][pc] - np.sign( h[:, i][pc] - 180.0 ) * 180.0 # add/subtract 180° to get positive complementary wavelength # find 2 closest hues in sl: #hslb,hib = meshblock(hsl,h[:,i:i+1]) hib, hslb = np.meshgrid(h[:, i:i + 1], hsl) dh = np.abs(hslb - hib) q1 = dh.argmin(axis=0) # index of closest hue dh[q1] = 1000000.0 q2 = dh.argmin(axis=0) # index of second closest hue print('q1q2', q2, q1) print('wls:', h[:, i], wlsl[q1], wlsl[q2]) print('hsls:', hsl[q2, 0], hsl[q1, 0]) print('d', (wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]), (wlsl[q2] - wlsl[q1]) / (hsl[q2, 0] - hsl[q1, 0])) print('(h[:,i] - hsl[q1,0])', (h[:, i] - hsl[q1, 0])) print('div', np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]))) print( 'mult(...)', np.multiply((h[:, i] - hsl[q1, 0]), np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0])))) dominantwavelength[:, i] = wlsl[q1] + np.multiply( (h[:, i] - hsl[q1, 0]), np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0])) ) # calculate wl corresponding to h: y = y1 + (x-x1)*(y2-y1)/(x2-x1) print('dom', dominantwavelength[:, i]) dominantwavelength[(dominantwavelength[:, i] > max(wlsl[q1], wlsl[q2])), i] = max(wlsl[q1], wlsl[q2]) dominantwavelength[(dominantwavelength[:, i] < min(wlsl[q1], wlsl[q2])), i] = min(wlsl[q1], wlsl[q2]) dominantwavelength[:, i][pc] = -dominantwavelength[:, i][ pc] #complementary wavelengths are specified by '-' sign # calculate excitation purity: x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[ q1, 0]) / (hsl[q2, 0] - hsl[q1, 0]) # calculate x of dom. wl y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[ q1, 0]) / (hsl[q2, 0] - hsl[q1, 0]) # calculate y of dom. wl d_wl = (x_dom_wl**2.0 + y_dom_wl**2.0)**0.5 # distance from white point to sl d = (x[:, i]**2.0 + y[:, i]**2.0)**0.5 # distance from white point to test point purity[:, i] = d / d_wl # correct for those test points that have a complementary wavelength # calculate intersection of line through white point and test point and purple line: xy = np.vstack((x[:, i], y[:, i])).T xyw = np.hstack((xw, yw)) xypl1 = np.hstack((xsl[0, None], ysl[0, None])) xypl2 = np.hstack((xsl[-1, None], ysl[-1, None])) da = (xy - xyw) db = (xypl2 - xypl1) dp = (xyw - xypl1) T = np.array([[0.0, -1.0], [1.0, 0.0]]) dap = np.dot(da, T) denom = np.sum(dap * db, axis=1, keepdims=True) num = np.sum(dap * dp, axis=1, keepdims=True) xy_linecross = (num / denom) * db + xypl1 d_linecross = np.atleast_2d( (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T #[0] purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0] Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity)) if axes12flipped == True: Ydlep = Ydlep.transpose((1, 0, 2)) else: Ydlep = Ydlep.transpose((0, 1, 2)) return Ydlep.reshape(xyz.shape)
def Ydlep_to_xyz(Ydlep, cieobs=_CIEOBS, xyzw=_COLORTF_DEFAULT_WHITE_POINT, flip_axes=False, SL_max_lambda=None, **kwargs): """ Convert Y, dominant (complementary) wavelength and excitation purity to XYZ tristimulus values. Args: :Ydlep: | ndarray with Y, dominant (complementary) wavelength and excitation purity :xyzw: | None or narray with tristimulus values of a single (!) native white point, optional | None defaults to xyz of CIE D65 using the :cieobs: observer. :cieobs: | luxpy._CIEOBS, optional | CMF set to use when calculating spectrum locus coordinates. :flip_axes: | False, optional | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function. | (single xyzw with is not flipped!) :SL_max_lambda: | None or float, optional | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm) Returns: :xyz: | ndarray with tristimulus values """ Ydlep3 = np3d(Ydlep).copy().astype(np.float) # flip axis so that longest dim is on first axis (save time in looping): if (Ydlep3.shape[0] < Ydlep3.shape[1]) & (flip_axes == True): axes12flipped = True Ydlep3 = Ydlep3.transpose((1, 0, 2)) else: axes12flipped = False # convert xyzw to Yxyw: Yxyw = xyz_to_Yxy(xyzw) Yxywo = Yxyw.copy() # get spectrum locus Y,x,y and wavelengths: SL = _CMF[cieobs]['bar'] SL = SL[:, SL[1:].sum(axis=0) > 0] # avoid div by zero in xyz-to-Yxy conversion wlsl = SL[0, None].T Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None] # Get maximum wavelength of spectrum locus (before it turns back on itself) if SL_max_lambda is None: pmaxlambda = Yxysl[..., 1].argmax() # lambda with largest x value dwl = np.diff( Yxysl[:, 0, 1]) # spectrumlocus in that range should have increasing x dwl[wlsl[:-1, 0] < 600] = 10000 pmaxlambda = np.where( dwl <= 0)[0][0] # Take first element with zero or <zero slope else: pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin() Yxysl = Yxysl[:(pmaxlambda + 1), :] wlsl = wlsl[:(pmaxlambda + 1), :1] # center on xyzw: Yxysl = Yxysl - Yxyw Yxyw = Yxyw - Yxyw #split: Y, dom, pur = asplit(Ydlep3) Yw, xw, yw = asplit(Yxyw) Ywo, xwo, ywo = asplit(Yxywo) Ysl, xsl, ysl = asplit(Yxysl) # loop over longest dim: x = np.empty(Y.shape) y = np.empty(Y.shape) for i in range(Ydlep3.shape[1]): # find closest wl's to dom: #wlslb,wlib = meshblock(wlsl,np.abs(dom[i,:])) #abs because dom<0--> complemtary wl wlib, wlslb = np.meshgrid(np.abs(dom[:, i]), wlsl) dwl = wlslb - wlib q1 = np.abs(dwl).argmin(axis=0) # index of closest wl sign_q1 = np.sign(dwl[q1]) dwl[np.sign(dwl) == sign_q1] = 1000000 # set all dwl on the same side as q1 to a very large value q2 = np.abs(dwl).argmin( axis=0) # index of second closest (enclosing) wl # calculate x,y of dom: x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * ( np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0] ) # calculate x of dom. wl y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * ( np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0] ) # calculate y of dom. wl # calculate x,y of test: d_wl = (x_dom_wl**2.0 + y_dom_wl**2.0)**0.5 # distance from white point to dom d = pur[:, i] * d_wl hdom = math.positive_arctan(x_dom_wl, y_dom_wl, htype='deg') x[:, i] = d * np.cos(hdom * np.pi / 180.0) y[:, i] = d * np.sin(hdom * np.pi / 180.0) # complementary: pc = np.where(dom[:, i] < 0.0) hdom[pc] = hdom[pc] - np.sign(dom[:, i][pc] - 180.0) * 180.0 # get positive hue angle # calculate intersection of line through white point and test point and purple line: xy = np.vstack((x_dom_wl, y_dom_wl)).T xyw = np.vstack((xw, yw)).T xypl1 = np.vstack((xsl[0, None], ysl[0, None])).T xypl2 = np.vstack((xsl[-1, None], ysl[-1, None])).T da = (xy - xyw) db = (xypl2 - xypl1) dp = (xyw - xypl1) T = np.array([[0.0, -1.0], [1.0, 0.0]]) dap = np.dot(da, T) denom = np.sum(dap * db, axis=1, keepdims=True) num = np.sum(dap * dp, axis=1, keepdims=True) xy_linecross = (num / denom) * db + xypl1 d_linecross = np.atleast_2d( (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T[:, 0] x[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.cos( hdom[pc] * np.pi / 180) y[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.sin( hdom[pc] * np.pi / 180) Yxy = np.dstack((Ydlep3[:, :, 0], x + xwo, y + ywo)) if axes12flipped == True: Yxy = Yxy.transpose((1, 0, 2)) else: Yxy = Yxy.transpose((0, 1, 2)) return Yxy_to_xyz(Yxy).reshape(Ydlep.shape)