def obstacle_collision(): """Tests whether an arm in its final configuration makes contact with either of our obstacles. """ # Create two obstacles obstacles = [Obstacle([1, 4, 1], [4, 5, 1.5]), Obstacle([1, 2, 1], [4, 3, 1.5])] # And a ball ball = Ball([2.5, 2.5, 2.0], 0.25) # Create an arm q0 = np.array([0, 0, 0, np.pi / 2, 0, 0, 0]) human_arm = simple_human_arm(2.0, 2.0, q0, np.array([3.0, 1.0, 0.0])) # Define environment env = Environment(dimensions=[10.0, 10.0, 20.0], dynamic_objects=[ball], static_objects=obstacles, robot=human_arm) # Run inverse kinematics towards the ball human_arm.ikine(ball.position) # And animate it for 5 seconds env.animate(5.0) print "Ball hit obstacle?", print any([obstacle.is_hit_by_sphere(ball.position, ball.radius) for obstacle in obstacles]) print "Arm link hit obstacle?", print any([human_arm.is_in_collision(obstacle) for obstacle in obstacles])
def plot_arm(): """Shows how to plot an arm.""" # Create an arm at a certain position and joint angle q0 = np.array([0, 0, 0, -2.0, 0, 0, 0]) base_pos = np.array([1.0, 1.0, 0.0]) human_arm = simple_human_arm(2.0, 1.0, q0, base_pos) env = Environment(dimensions=[3.0, 3.0, 3.0], robot=[human_arm]) env.plot()
def find_jacob0(): """Show how to calculate the jacobian of am arm.""" np.set_printoptions(suppress=True) # Create arm q0 = np.array([0, -np.pi / 4, 0, -np.pi / 4, 0, 0, 0]) arm = simple_human_arm(2, 1, q0) # Calculate jacobian on that joint config print arm.jacob0(q0)
def get_medium_environment(): """A medium difficulty environment for planning tests with two obstacles, a ball as a target, and a simple human arm. """ obstacles = [ Obstacle([2.5, 0, 2.2], [3.5, 1, 2.5]), Obstacle([3, 2, 1], [4, 2.5, 1.5]) ] ball = Ball([2.5, 2.5, 2.0], 0.25, target=True) q = np.array([0, 0, 0, 0, 0, 0, 0]) robot = simple_human_arm(2.0, 2.0, q, np.array([3.0, 1.0, 0.0])) return Environment(dynamic_objects=[ball], static_objects=obstacles, robot=robot)
def get_hard_environment_v2(): """A very hard difficulty environment for planning tests with three obstacles, a ball as a target, and a simple human arm. """ obstacles = [ Obstacle([2.5, 2.0, 0.0], [4.0, 2.5, 4.0]), Obstacle([1.5, 2.0, 0.0], [2.5, 3.5, 4.0]), Obstacle([3.2, 3.5, 0.0], [5.5, 4.0, 4.0]) ] ball = Ball([2.8, 3.8, 2.0], 0.25, target=True) q = np.array([0, 0, 0, 0, 0, 0, 0]) robot = simple_human_arm(2.0, 2.0, q, np.array([3.0, 3.0, 0.0])) return Environment(dynamic_objects=[ball], static_objects=obstacles, robot=robot)
def get_hard_environment(): """A hard difficulty environment for planning tests with five obstacles, a ball as a target, and a simple human arm. """ obstacles = [ Obstacle([0.0, 2.0, 0.0], [1.5, 2.5, 3.0]), Obstacle([0.0, 4.0, 0.0], [1.5, 4.5, 3.0]), Obstacle([0.0, 2.5, 0.0], [0.5, 4.0, 3.0]), Obstacle([0.0, 2.0, 3.0], [1.5, 4.5, 3.5]), Obstacle([0.5, 2.5, 0.0], [1.5, 4.0, 1.0]) ] ball = Ball([1.0, 3.25, 2.0], 0.5, target=True) q = np.array([0, 0, 0, -np.pi / 2.0, 0, 0, 0]) robot = simple_human_arm(3.0, 2.0, q, np.array([1.0, 1.0, 0.0])) return Environment(dynamic_objects=[ball], static_objects=obstacles, robot=robot)
def get_tutorial_environment(): """Our environment from our documentation tutorial""" # Create an arm with a specific config and base position q0 = np.array([0.5, 0.2, 0, 0.5, 0, 0, 0]) base_pos = np.array([2.0, 2.0, 0.0]) # And link segments of length 2.0 arm = simple_human_arm(2.0, 2.0, q0, base_pos) # We then create a ball, target, and obstacle ball = Ball(position=[2.0, 0.0, 2.0], radius=0.15) target = Target(position=[5.0, 8.0, 2.0], radius=0.5) obstacle = Obstacle([4, 4, 0], [5, 5, 2]) # And use these to create an environment with dimensions 10x10x10 return Environment(dimensions=[10, 10, 10], dynamic_objects=[ball], static_objects=[target, obstacle], robot=arm)
def arm_animation(): """Animate the arm moving to touch a ball""" # Declare a human arm q0 = np.array([0.5, 0.2, 0, 0.5, 1.5]) human_arm = simple_human_arm(2.0, 2.0, q0, np.array([2.0, 2.0, 0.0])) # Create a ball as our target ball = Ball(np.array([3.0, 2.0, 3.0]), 0.15, target=True) # Create our environment env = Environment([5.0, 5.0, 5.0], dynamic_objects=[ball], robot=human_arm) # Run inverse kinematics to find a joint config that lets arm touch ball human_arm.ikine(ball.position) # Animate env.animate(5.0)
def arm_ball_animation(): """Animate an arm holding a ball, moving around to an arbitrary spot.""" # Create a human arm q0 = np.array([0.5, 0.2, 0, 0.5, 1.5]) human_arm = simple_human_arm(2.0, 2.0, q0, np.array([2.0, 2.0, 0.0])) # Create a ball the arm can hold ball = Ball(np.array([0.0, 0.0, 0.0]), 0.15) human_arm.hold(ball) # Declare our environment env = Environment([5.0, 5.0, 5.0], dynamic_objects=[ball], robot=human_arm) # Find joint config to random location show we can show arm moving # while holding the ball position = human_arm.ikine([3.0, 2.0, 3.0]) # Animate for 3 seconds env.animate(3.0)
def plot(): """Generic plotting example given an environment with some objects in it and a robot. """ # Create our arm q0 = np.array([0.5, 0.2, 0, 0.5, 0, 0, 0]) human_arm = simple_human_arm(2.0, 2.0, q0, np.array([2.0, 2.0, 0.0])) # And our objects ball = Ball(np.array([2.0, 0.0, 2.0]), 0.15) target = Target(np.array([5.0, 8.0, 2.0]), 0.5) env = Environment(dimensions=[10.0, 10.0, 10.0], dynamic_objects=[ball], static_objects=[target], robot=human_arm) # Make the arm touch the ball new_q = human_arm.ikine(ball.position, 10000, 0.01) human_arm.update_angles(new_q) # Plot it env.plot()
def __init__(self, num_joints=4): self.actions = [-1, 1] * num_joints self.actions += ["Throw"] self.move_count = 0 self.collected_rewards = [] self.released = False self.num_actions = len(self.actions) self.observation_size = len(self.actions) self.ball = Ball(np.array([0, 0, 0]), 0.15) self.target = Target(np.array([2.0, 10.0, 2.0]), 0.5) q = np.array([0, 0, 0, np.pi / 2, 0, 0, 0]) self.robot = simple_human_arm(1.0, 1.0, q, np.array([2.0, 2.0, 2.0])) room_dimensions = np.array([10.0, 10.0, 20.0]) self.env = Environment(room_dimensions, dynamic_objects=[self.ball], static_objects=[self.target], robot=self.robot) self.max_distance = np.linalg.norm(room_dimensions) self.distance_to_target = self.max_distance