def get_ontime_percentage_report_for_given_minutes(minutes, session, exclude_stops=None): stop_names = manage.get_stop_names() stop_passenger_ratio = get_stop_passenger_ratio() stops = stop_names.keys() data, trainstops = calc_ontime_data(stops, session, minutes, stop_names) all_vals = [data[x]['all'] for x in stops] rush = [data[x]['rush'] for x in stops] non_rush = [data[x]['non_rush'] for x in stops] stop_names_list = [stop_names[x] for x in stops] exclude_inds = [stops.index(x) for x in exclude_stops] order = np.argsort(all_vals)[::-1] order = [i for i in order if i not in exclude_inds] all_vals_ordered = [all_vals[i] for i in order] rush_ordered = [rush[i] for i in order] stop_names_list_ordered = [stop_names_list[i] for i in order] title = 'Percentage of on-time trains per station. On time is when delay < {} minutes'.format(minutes) vals_dict = {"all":all_vals_ordered, "rush":rush_ordered} display_station_delay_bar_graph(vals_dict, stop_names_list_ordered, title, (22.0, 16.0)) print title print "Name\tAll\tRush-hour" for val in reversed(zip(stop_names_list_ordered, all_vals_ordered, rush_ordered)): print val[0] + '\t' + str(val[1]) + '\t' + str(val[2]) print "" passenger_weighted_all, passenger_weighted_rush = calc_passenger_weighted_ontime_percent(stops, stop_passenger_ratio, data) print "Passenger ontime={}%, rush={}% (up to {} minutes delay)".format(passenger_weighted_all, passenger_weighted_rush, minutes)
def analyze_average_commute(date_val): # Display a contiguous commute time from a source station to a target station # Get DB data session = manage.get_session() stop_names = manage.get_stop_names() station_id_dict = station_id2name('../data/stops_ids_and_names.txt') # Create a graph representation of the train stops G = create_train_graph(session, stop_names, station_id_dict, date_val) target = 4600 # station_id for Tel-Aviv Hashalom time_len = 60*24 hour_vec = np.array(range(24*60))/60 minute_vec = np.array(range(24*60)) % 60 time_indx_real = map(lambda x: '%04d'%x, hour_vec*100 + minute_vec) # Calculation of the DOT graph algorithms dist_vec, path_vec = dynamic_all_to_one(G, target, time_len) display_graph(G, draw_edge_label=False) station_id = 5410 xindx = range(len(time_indx_real)) plt.xticks(xindx[240::240], time_indx_real[240::240]), plt.plot(xindx[240:], dist_vec[station_id][240:], label=station_id_dict[station_id], linewidth=2.5), plt.grid(), plt.ylim(0, 150) plt.xlabel('time of day'), plt.ylabel('time of commute in minutes'), plt.title(('Commute Time to %s') % (station_id_dict[4600])) station_id = 3500 plt.plot(xindx[240:], dist_vec[station_id][240:], label=station_id_dict[station_id], linewidth=2.5) station_id=8700 plt.plot(xindx[240:], dist_vec[station_id][240:], label=station_id_dict[station_id], linewidth=2.5) plt.legend() plt.show()
def analyze_average_commute(date_val): # Display a contiguous commute time from a source station to a target station # Get DB data session = manage.get_session() stop_names = manage.get_stop_names() station_id_dict = station_id2name('../data/stops_ids_and_names.txt') # Create a graph representation of the train stops G = create_train_graph(session, stop_names, station_id_dict, date_val) target = 4600 # station_id for Tel-Aviv Hashalom time_len = 60 * 24 hour_vec = np.array(range(24 * 60)) / 60 minute_vec = np.array(range(24 * 60)) % 60 time_indx_real = map(lambda x: '%04d' % x, hour_vec * 100 + minute_vec) # Calculation of the DOT graph algorithms dist_vec, path_vec = dynamic_all_to_one(G, target, time_len) display_graph(G, draw_edge_label=False) station_id = 5410 xindx = range(len(time_indx_real)) plt.xticks(xindx[240::240], time_indx_real[240::240]), plt.plot( xindx[240:], dist_vec[station_id][240:], label=station_id_dict[station_id], linewidth=2.5), plt.grid(), plt.ylim(0, 150) plt.xlabel('time of day'), plt.ylabel( 'time of commute in minutes'), plt.title( ('Commute Time to %s') % (station_id_dict[4600])) station_id = 3500 plt.plot(xindx[240:], dist_vec[station_id][240:], label=station_id_dict[station_id], linewidth=2.5) station_id = 8700 plt.plot(xindx[240:], dist_vec[station_id][240:], label=station_id_dict[station_id], linewidth=2.5) plt.legend() plt.show()
def get_ontime_percentage_report_for_given_minutes(minutes, session, exclude_stops=None): stop_names = manage.get_stop_names() stop_passenger_ratio = get_stop_passenger_ratio() stops = stop_names.keys() data, trainstops = calc_ontime_data(stops, session, minutes, stop_names) all_vals = [data[x]['all'] for x in stops] rush = [data[x]['rush'] for x in stops] non_rush = [data[x]['non_rush'] for x in stops] stop_names_list = [stop_names[x] for x in stops] exclude_inds = [stops.index(x) for x in exclude_stops] order = np.argsort(all_vals)[::-1] order = [i for i in order if i not in exclude_inds] all_vals_ordered = [all_vals[i] for i in order] rush_ordered = [rush[i] for i in order] stop_names_list_ordered = [stop_names_list[i] for i in order] title = 'Percentage of on-time trains per station. On time is when delay < {} minutes'.format( minutes) vals_dict = {"all": all_vals_ordered, "rush": rush_ordered} display_station_delay_bar_graph(vals_dict, stop_names_list_ordered, title, (22.0, 16.0)) print title print "Name\tAll\tRush-hour" for val in reversed( zip(stop_names_list_ordered, all_vals_ordered, rush_ordered)): print val[0] + '\t' + str(val[1]) + '\t' + str(val[2]) print "" passenger_weighted_all, passenger_weighted_rush = calc_passenger_weighted_ontime_percent( stops, stop_passenger_ratio, data) print "Passenger ontime={}%, rush={}% (up to {} minutes delay)".format( passenger_weighted_all, passenger_weighted_rush, minutes)
path_vec[i][t] = [i] + path_vec[j][time_next] return dist_vec, path_vec ### ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': # Create graph # time_len = 2 # G = create_toy_graph(10, 25, time_len=time_len) # G = create_predefind_graph() import manage session = manage.get_session() stop_names = manage.get_stop_names() station_id_dict = station_id2name('../data/stops_ids_and_names.txt') date_val = datetime.date(2014, 1, 1) G = create_train_graph(session, stop_names, station_id_dict, date_val) target = 4600 time_len = 60*24 hour_vec = np.array(range(24*60))/60 minuete_vec = np.array(range(24*60)) % 60 time_indx_real = map(lambda x: '%04d'%x, hour_vec*100 + minuete_vec) dist_vec, path_vec = dynamic_all_to_one(G, target, time_len) display_graph(G, draw_edge_label=False)