Esempio n. 1
0
    def get_max_q_values(self, states: str, possible_actions: str,
                         use_target_network: bool) -> str:
        """
        Takes in an array of states and outputs an array of the same shape
        whose ith entry = max_{pna} Q(state_i, pna).

        :param states: Numpy array with shape (batch_size, state_dim). Each
            row contains a representation of a state.
        :param possible_next_actions: Numpy array with shape (batch_size, action_dim).
            possible_next_actions[i][j] = 1 iff the agent can take action j from
            state i.
        :use_target_network: Boolean that indicates whether or not to use this
            trainer's TargetNetwork to compute Q values.
        """
        q_values = self.get_q_values_all_actions(states, use_target_network)

        # Set the q values of impossible actions to a very large negative
        #    number.
        inverse_pna = C2.ConstantFill(possible_actions, value=1.0)
        possible_actions_float = C2.Cast(possible_actions,
                                         to=core.DataType.FLOAT)
        inverse_pna = C2.Sub(inverse_pna, possible_actions_float)
        inverse_pna = C2.Mul(inverse_pna,
                             self.ACTION_NOT_POSSIBLE_VAL,
                             broadcast=1)
        q_values = C2.Add(q_values, inverse_pna)

        q_values_max = C2.ReduceBackMax(q_values, num_reduce_dims=1)
        return C2.ExpandDims(q_values_max, dims=[1])
    def update_model(self, states: str, actions: str, q_vals_target: str) -> None:
        """
        Takes in states, actions, and target q values. Updates the model:

            Runs the forward pass, computing Q(states, actions).
                Q(states, actions)[i][j] is an approximation of Q*(states[i], action_j).
            Comptutes Loss of Q(states, actions) with respect to q_vals_targets
            Updates Q Network's weights according to loss and optimizer

        :param states: Numpy array with shape (batch_size, state_dim). The ith
            row is a representation of the ith transition's state.
        :param actions: Numpy array with shape (batch_size, action_dim). The ith
            row contains the one-hotted representation of the ith action.
        :param q_vals_targets: Numpy array with shape (batch_size, 1). The ith
            row is the label to train against for the data from the ith transition.
        """
        model = C2.model()
        q_vals_target = C2.StopGradient(q_vals_target)
        output_blob = C2.NextBlob("train_output")
        if self.conv_ml_trainer is not None:
            conv_output_blob = C2.NextBlob("conv_output")
            self.conv_ml_trainer.make_conv_pass_ops(model, states, conv_output_blob)
            states = conv_output_blob

        self.ml_trainer.make_forward_pass_ops(model, states, output_blob, False)
        q_val_select = C2.ReduceBackSum(C2.Mul(output_blob, actions))
        q_values = C2.ExpandDims(q_val_select, dims=[1])

        self.loss_blob = self.ml_trainer.generateLossOps(model, q_values, q_vals_target)
        model.AddGradientOperators([self.loss_blob])
        for param in model.params:
            if param in model.param_to_grad:
                param_grad = model.param_to_grad[param]
                param_grad = C2.NanCheck(param_grad)
        self.ml_trainer.addParameterUpdateOps(model)
    def update_model(
        self,
        states: str,
        actions: str,
        q_vals_target: str,
    ) -> None:
        """
        Takes in states, actions, and target q values. Updates the model:

            Runs the forward pass, computing Q(states, actions).
                Q(states, actions)[i][j] is an approximation of Q*(states[i], action_j).
            Comptutes Loss of Q(states, actions) with respect to q_vals_targets
            Updates Q Network's weights according to loss and optimizer

        :param states: Numpy array with shape (batch_size, state_dim). The ith
            row is a representation of the ith transition's state.
        :param actions: Numpy array with shape (batch_size, action_dim). The ith
            row contains the one-hotted representation of the ith action.
        :param q_vals_targets: Numpy array with shape (batch_size, 1). The ith
            row is the label to train against for the data from the ith transition.
        """
        model = C2.model()
        q_vals_target = C2.StopGradient(q_vals_target)
        output_blob = C2.NextBlob("train_output")
        MakeForwardPassOps(
            model,
            self.model_id,
            states,
            output_blob,
            self.weights,
            self.biases,
            self.activations,
            self.layers,
            self.dropout_ratio,
            False,
        )
        q_val_select = C2.ReduceBackSum(C2.Mul(output_blob, actions))
        q_values = C2.ExpandDims(q_val_select, dims=[1])

        self.loss_blob = GenerateLossOps(
            model,
            q_values,
            q_vals_target,
        )
        model.AddGradientOperators([self.loss_blob])
        for param in model.params:
            if param in model.param_to_grad:
                param_grad = model.param_to_grad[param]
                param_grad = C2.NanCheck(param_grad)
        AddParameterUpdateOps(
            model,
            optimizer_input=self.optimizer,
            base_learning_rate=self.learning_rate,
            gamma=self.gamma,
            policy=self.lr_policy,
        )