def _sum_deterministic_policy(self, model_names, path): net = core.Net('DeterministicPolicy') C2.set_net(net) output = 'ActionProbabilities' workspace.FeedBlob(output, np.array([1.0])) model_outputs = [] for model in model_names: model_output = '{}_Output'.format(model) workspace.FeedBlob(model_output, np.array([1.0], dtype=np.float32)) model_outputs.append(model_output) max_action = C2.FlattenToVec( C2.ArgMax(C2.Transpose(C2.Sum(*model_outputs))) ) one_blob = C2.NextBlob('one') workspace.FeedBlob(one_blob, np.array([1.0], dtype=np.float32)) C2.net().SparseToDense( [ max_action, one_blob, model_outputs[0], ], [output], ) meta = PredictorExportMeta( net, [one_blob], model_outputs, [output], ) save_to_db('minidb', path, meta)
def save_sum_deterministic_policy(model_names, path, db_type): net = core.Net("DeterministicPolicy") C2.set_net(net) output = "ActionProbabilities" workspace.FeedBlob(output, np.array([1.0])) model_outputs = [] for model in model_names: model_output = "{}_Output".format(model) workspace.FeedBlob(model_output, np.array([[1.0]], dtype=np.float32)) model_outputs.append(model_output) max_action = C2.FlattenToVec(C2.ArgMax(C2.Transpose(C2.Sum(*model_outputs)))) one_blob = C2.NextBlob("one") workspace.FeedBlob(one_blob, np.array([1.0], dtype=np.float32)) C2.net().SparseToDense([max_action, one_blob, model_outputs[0]], [output]) meta = PredictorExportMeta(net, [one_blob], model_outputs, [output]) save_to_db(db_type, path, meta)
def export(cls, trainer, actions, state_normalization_parameters, int_features=False): """ Creates a DiscreteActionPredictor from a DiscreteActionTrainer. :param trainer DiscreteActionTrainer :param actions list of action names :param state_normalization_parameters state NormalizationParameters :param int_features boolean indicating if int features blob will be present """ model = model_helper.ModelHelper(name="predictor") net = model.net C2.set_model(model) workspace.FeedBlob('input/image', np.zeros([1, 1, 1, 1], dtype=np.int32)) workspace.FeedBlob('input/float_features.lengths', np.zeros(1, dtype=np.int32)) workspace.FeedBlob('input/float_features.keys', np.zeros(1, dtype=np.int64)) workspace.FeedBlob('input/float_features.values', np.zeros(1, dtype=np.float32)) input_feature_lengths = 'input_feature_lengths' input_feature_keys = 'input_feature_keys' input_feature_values = 'input_feature_values' if int_features: workspace.FeedBlob('input/int_features.lengths', np.zeros(1, dtype=np.int32)) workspace.FeedBlob('input/int_features.keys', np.zeros(1, dtype=np.int64)) workspace.FeedBlob('input/int_features.values', np.zeros(1, dtype=np.int32)) C2.net().Cast(['input/int_features.values'], ['input/int_features.values_float'], dtype=caffe2_pb2.TensorProto.FLOAT) C2.net().MergeMultiScalarFeatureTensors([ 'input/float_features.lengths', 'input/float_features.keys', 'input/float_features.values', 'input/int_features.lengths', 'input/int_features.keys', 'input/int_features.values_float' ], [ input_feature_lengths, input_feature_keys, input_feature_values ]) else: C2.net().Copy(['input/float_features.lengths'], [input_feature_lengths]) C2.net().Copy(['input/float_features.keys'], [input_feature_keys]) C2.net().Copy(['input/float_features.values'], [input_feature_values]) parameters = [] if state_normalization_parameters is not None: preprocessor = PreprocessorNet(net, True) parameters.extend(preprocessor.parameters) normalized_dense_matrix, new_parameters = \ preprocessor.normalize_sparse_matrix( input_feature_lengths, input_feature_keys, input_feature_values, state_normalization_parameters, 'state_norm', ) parameters.extend(new_parameters) else: # Image input. Note: Currently this does the wrong thing if # more than one image is passed at a time. normalized_dense_matrix = 'input/image' new_parameters, q_values = RLPredictor._forward_pass( model, trainer, normalized_dense_matrix, actions, ) parameters.extend(new_parameters) # Get 1 x n action index tensor under the max_q policy max_q_act_idxs = 'max_q_policy_actions' C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0) shape_of_num_of_states = 'num_states_shape' C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states]) num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1]) # Get 1 x n action index tensor under the softmax policy temperature = C2.NextBlob("temperature") parameters.append(temperature) workspace.FeedBlob( temperature, np.array([trainer.rl_temperature], dtype=np.float32)) tempered_q_values = C2.Div(q_values, "temperature", broadcast=1) softmax_values = C2.Softmax(tempered_q_values) softmax_act_idxs_nested = 'softmax_act_idxs_nested' C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested]) softmax_act_idxs = 'softmax_policy_actions' C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0) # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]] # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...] max_q_act_blob = C2.Cast(max_q_act_idxs, to=caffe2_pb2.TensorProto.INT32) softmax_act_blob = C2.Cast(softmax_act_idxs, to=caffe2_pb2.TensorProto.INT32) C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob]) transposed_action_idxs = C2.Transpose(max_q_act_blob) flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs) output_values = 'output/string_single_categorical_features.values' workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64)) C2.net().Gather(["action_names", flat_transposed_action_idxs], [output_values]) output_lengths = 'output/string_single_categorical_features.lengths' workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32)) C2.net().ConstantFill([shape_of_num_of_states], [output_lengths], value=2, dtype=caffe2_pb2.TensorProto.INT32) output_keys = 'output/string_single_categorical_features.keys' workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64)) output_keys_tensor, _ = C2.Concat( C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64), C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64), axis=0, ) output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0) C2.net().FlattenToVec([output_key_tile], [output_keys]) workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(net) return DiscreteActionPredictor(net, parameters, int_features)
def export( cls, trainer, state_normalization_parameters, action_normalization_parameters, int_features=False, model_on_gpu=False, ): """Export caffe2 preprocessor net and pytorch DQN forward pass as one caffe2 net. :param trainer ParametricDQNTrainer :param state_normalization_parameters state NormalizationParameters :param action_normalization_parameters action NormalizationParameters :param int_features boolean indicating if int features blob will be present :param model_on_gpu boolean indicating if the model is a GPU model or CPU model """ input_dim = trainer.num_features if isinstance(trainer.q_network, DataParallel): trainer.q_network = trainer.q_network.module buffer = PytorchCaffe2Converter.pytorch_net_to_buffer( trainer.q_network, input_dim, model_on_gpu ) qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef( buffer ) torch_workspace = caffe2_netdef.workspace parameters = torch_workspace.Blobs() for blob_str in parameters: workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str)) torch_init_net = core.Net(caffe2_netdef.init_net) torch_predict_net = core.Net(caffe2_netdef.predict_net) # While converting to metanetdef, the external_input of predict_net # will be recomputed. Add the real output of init_net to parameters # to make sure they will be counted. parameters.extend( set(caffe2_netdef.init_net.external_output) - set(caffe2_netdef.init_net.external_input) ) # ensure state and action IDs have no intersection assert ( len( set(state_normalization_parameters.keys()) & set(action_normalization_parameters.keys()) ) == 0 ) model = model_helper.ModelHelper(name="predictor") net = model.net C2.set_model(model) workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32)) workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64)) workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32)) input_feature_lengths = "input_feature_lengths" input_feature_keys = "input_feature_keys" input_feature_values = "input_feature_values" if int_features: workspace.FeedBlob( "input/int_features.lengths", np.zeros(1, dtype=np.int32) ) workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64)) workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32)) C2.net().Cast( ["input/int_features.values"], ["input/int_features.values_float"], dtype=caffe2_pb2.TensorProto.FLOAT, ) C2.net().MergeMultiScalarFeatureTensors( [ "input/float_features.lengths", "input/float_features.keys", "input/float_features.values", "input/int_features.lengths", "input/int_features.keys", "input/int_features.values_float", ], [input_feature_lengths, input_feature_keys, input_feature_values], ) else: C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths]) C2.net().Copy(["input/float_features.keys"], [input_feature_keys]) C2.net().Copy(["input/float_features.values"], [input_feature_values]) preprocessor = PreprocessorNet(True) sorted_state_features, _ = sort_features_by_normalization( state_normalization_parameters ) state_dense_matrix, new_parameters = sparse_to_dense( input_feature_lengths, input_feature_keys, input_feature_values, sorted_state_features, ) parameters.extend(new_parameters) state_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix( state_dense_matrix, sorted_state_features, state_normalization_parameters, "state_norm", False, ) parameters.extend(new_parameters) sorted_action_features, _ = sort_features_by_normalization( action_normalization_parameters ) action_dense_matrix, new_parameters = sparse_to_dense( input_feature_lengths, input_feature_keys, input_feature_values, sorted_action_features, ) parameters.extend(new_parameters) action_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix( action_dense_matrix, sorted_action_features, action_normalization_parameters, "action_norm", False, ) parameters.extend(new_parameters) state_action_normalized = "state_action_normalized" state_action_normalized_dim = "state_action_normalized_dim" net.Concat( [state_normalized_dense_matrix, action_normalized_dense_matrix], [state_action_normalized, state_action_normalized_dim], axis=1, ) net.Copy([state_action_normalized], [qnet_input_blob]) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(torch_init_net) net.AppendNet(torch_predict_net) new_parameters, q_values = RLPredictor._forward_pass( model, trainer, state_action_normalized, ["Q"], qnet_output_blob ) parameters.extend(new_parameters) flat_q_values_key = ( "output/string_weighted_multi_categorical_features.values.values" ) num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1]) q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1]) # Get 1 x n (number of examples) action index tensor under the max_q policy max_q_act_idxs = "max_q_policy_actions" C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs]) max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0) # Get 1 x n (number of examples) action index tensor under the softmax policy temperature = C2.NextBlob("temperature") parameters.append(temperature) workspace.FeedBlob( temperature, np.array([trainer.rl_temperature], dtype=np.float32) ) tempered_q_values = C2.Div(q_value_blob, temperature, broadcast=1) softmax_values = C2.Softmax(tempered_q_values) softmax_act_idxs_nested = "softmax_act_idxs_nested" C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested]) softmax_act_blob = C2.Tile( C2.FlattenToVec(softmax_act_idxs_nested), num_examples, axis=0 ) # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]] # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...] max_q_act_blob = C2.Cast(max_q_act_blob, to=caffe2_pb2.TensorProto.INT64) softmax_act_blob = C2.Cast(softmax_act_blob, to=caffe2_pb2.TensorProto.INT64) max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1]) softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob, shape=[1, -1]) C2.net().Append( [max_q_act_blob_nested, softmax_act_blob_nested], [max_q_act_blob_nested] ) transposed_action_idxs = C2.Transpose(max_q_act_blob_nested) flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs) output_values = "output/int_single_categorical_features.values" workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64)) C2.net().Copy([flat_transposed_action_idxs], [output_values]) output_lengths = "output/int_single_categorical_features.lengths" workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32)) C2.net().ConstantFill( [flat_q_values_key], [output_lengths], value=2, dtype=caffe2_pb2.TensorProto.INT32, ) output_keys = "output/int_single_categorical_features.keys" workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64)) output_keys_tensor, _ = C2.Concat( C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64), C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64), axis=0, ) output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0) C2.net().FlattenToVec([output_key_tile], [output_keys]) workspace.CreateNet(net) return ParametricDQNPredictor(net, torch_init_net, parameters, int_features)
def export( cls, trainer, state_normalization_parameters, action_normalization_parameters, ): """ Creates ContinuousActionDQNPredictor from a list of action trainers :param trainer ContinuousActionDQNPredictor :param state_features list of state feature names :param action_features list of action feature names """ # ensure state and action IDs have no intersection assert (len( set(state_normalization_parameters.keys()) & set(action_normalization_parameters.keys())) == 0) model = model_helper.ModelHelper(name="predictor") net = model.net C2.set_model(model) workspace.FeedBlob('input/float_features.lengths', np.zeros(1, dtype=np.int32)) workspace.FeedBlob('input/float_features.keys', np.zeros(1, dtype=np.int32)) workspace.FeedBlob('input/float_features.values', np.zeros(1, dtype=np.float32)) preprocessor = PreprocessorNet(net, True) parameters = [] parameters.extend(preprocessor.parameters) state_normalized_dense_matrix, new_parameters = \ preprocessor.normalize_sparse_matrix( 'input/float_features.lengths', 'input/float_features.keys', 'input/float_features.values', state_normalization_parameters, 'state_norm', ) parameters.extend(new_parameters) action_normalized_dense_matrix, new_parameters = \ preprocessor.normalize_sparse_matrix( 'input/float_features.lengths', 'input/float_features.keys', 'input/float_features.values', action_normalization_parameters, 'action_norm', ) parameters.extend(new_parameters) state_action_normalized = 'state_action_normalized' state_action_normalized_dim = 'state_action_normalized_dim' net.Concat( [state_normalized_dense_matrix, action_normalized_dense_matrix], [state_action_normalized, state_action_normalized_dim], axis=1) new_parameters, q_values = RLPredictor._forward_pass( model, trainer, state_action_normalized, ['Q'], ) parameters.extend(new_parameters) flat_q_values_key = \ 'output/string_weighted_multi_categorical_features.values.values' num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1]) q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1]) # Get 1 x n (number of examples) action index tensor under the max_q policy max_q_act_idxs = 'max_q_policy_actions' C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs]) max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0) # Get 1 x n (number of examples) action index tensor under the softmax policy temperature = C2.NextBlob("temperature") parameters.append(temperature) workspace.FeedBlob( temperature, np.array([trainer.rl_temperature], dtype=np.float32)) tempered_q_values = C2.Div(q_value_blob, "temperature", broadcast=1) softmax_values = C2.Softmax(tempered_q_values) softmax_act_idxs_nested = 'softmax_act_idxs_nested' C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested]) softmax_act_blob = C2.Tile(C2.FlattenToVec(softmax_act_idxs_nested), num_examples, axis=0) # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]] # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...] max_q_act_blob = C2.Cast(max_q_act_blob, to=caffe2_pb2.TensorProto.INT64) softmax_act_blob = C2.Cast(softmax_act_blob, to=caffe2_pb2.TensorProto.INT64) max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1]) softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob, shape=[1, -1]) C2.net().Append([max_q_act_blob_nested, softmax_act_blob_nested], [max_q_act_blob_nested]) transposed_action_idxs = C2.Transpose(max_q_act_blob_nested) flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs) output_values = 'output/int_single_categorical_features.values' workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64)) C2.net().Copy([flat_transposed_action_idxs], [output_values]) output_lengths = 'output/int_single_categorical_features.lengths' workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32)) C2.net().ConstantFill([flat_q_values_key], [output_lengths], value=2, dtype=caffe2_pb2.TensorProto.INT32) output_keys = 'output/int_single_categorical_features.keys' workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64)) output_keys_tensor, _ = C2.Concat( C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64), C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64), axis=0, ) output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0) C2.net().FlattenToVec([output_key_tile], [output_keys]) workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(net) return ContinuousActionDQNPredictor(net, parameters)
def export( cls, trainer, actions, state_normalization_parameters, int_features=False, model_on_gpu=False, set_missing_value_to_zero=False, ): """Export caffe2 preprocessor net and pytorch DQN forward pass as one caffe2 net. :param trainer DQNTrainer :param state_normalization_parameters state NormalizationParameters :param int_features boolean indicating if int features blob will be present :param model_on_gpu boolean indicating if the model is a GPU model or CPU model """ input_dim = trainer.num_features q_network = (trainer.q_network.module if isinstance( trainer.q_network, DataParallel) else trainer.q_network) buffer = PytorchCaffe2Converter.pytorch_net_to_buffer( q_network, input_dim, model_on_gpu) qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef( buffer) torch_workspace = caffe2_netdef.workspace parameters = torch_workspace.Blobs() for blob_str in parameters: workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str)) torch_init_net = core.Net(caffe2_netdef.init_net) torch_predict_net = core.Net(caffe2_netdef.predict_net) logger.info("Generated ONNX predict net:") logger.info(str(torch_predict_net.Proto())) # While converting to metanetdef, the external_input of predict_net # will be recomputed. Add the real output of init_net to parameters # to make sure they will be counted. parameters.extend( set(caffe2_netdef.init_net.external_output) - set(caffe2_netdef.init_net.external_input)) model = model_helper.ModelHelper(name="predictor") net = model.net C2.set_model(model) workspace.FeedBlob("input/image", np.zeros([1, 1, 1, 1], dtype=np.int32)) workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32)) workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64)) workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32)) input_feature_lengths = "input_feature_lengths" input_feature_keys = "input_feature_keys" input_feature_values = "input_feature_values" if int_features: workspace.FeedBlob("input/int_features.lengths", np.zeros(1, dtype=np.int32)) workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64)) workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32)) C2.net().Cast( ["input/int_features.values"], ["input/int_features.values_float"], dtype=caffe2_pb2.TensorProto.FLOAT, ) C2.net().MergeMultiScalarFeatureTensors( [ "input/float_features.lengths", "input/float_features.keys", "input/float_features.values", "input/int_features.lengths", "input/int_features.keys", "input/int_features.values_float", ], [ input_feature_lengths, input_feature_keys, input_feature_values ], ) else: C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths]) C2.net().Copy(["input/float_features.keys"], [input_feature_keys]) C2.net().Copy(["input/float_features.values"], [input_feature_values]) if state_normalization_parameters is not None: sorted_feature_ids = sort_features_by_normalization( state_normalization_parameters)[0] dense_matrix, new_parameters = sparse_to_dense( input_feature_lengths, input_feature_keys, input_feature_values, sorted_feature_ids, set_missing_value_to_zero=set_missing_value_to_zero, ) parameters.extend(new_parameters) preprocessor_net = PreprocessorNet() state_normalized_dense_matrix, new_parameters = preprocessor_net.normalize_dense_matrix( dense_matrix, sorted_feature_ids, state_normalization_parameters, "state_norm_", True, ) parameters.extend(new_parameters) else: # Image input. Note: Currently this does the wrong thing if # more than one image is passed at a time. state_normalized_dense_matrix = "input/image" net.Copy([state_normalized_dense_matrix], [qnet_input_blob]) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(torch_init_net) net.AppendNet(torch_predict_net) new_parameters, q_values = RLPredictor._forward_pass( model, trainer, state_normalized_dense_matrix, actions, qnet_output_blob) parameters.extend(new_parameters) # Get 1 x n action index tensor under the max_q policy max_q_act_idxs = "max_q_policy_actions" C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0) shape_of_num_of_states = "num_states_shape" C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states]) num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1]) # Get 1 x n action index tensor under the softmax policy temperature = C2.NextBlob("temperature") parameters.append(temperature) workspace.FeedBlob( temperature, np.array([trainer.rl_temperature], dtype=np.float32)) tempered_q_values = C2.Div(q_values, temperature, broadcast=1) softmax_values = C2.Softmax(tempered_q_values) softmax_act_idxs_nested = "softmax_act_idxs_nested" C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested]) softmax_act_idxs = "softmax_policy_actions" C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0) action_names = C2.NextBlob("action_names") parameters.append(action_names) workspace.FeedBlob(action_names, np.array(actions)) # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]] # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...] max_q_act_blob = C2.Cast(max_q_act_idxs, to=caffe2_pb2.TensorProto.INT32) softmax_act_blob = C2.Cast(softmax_act_idxs, to=caffe2_pb2.TensorProto.INT32) C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob]) transposed_action_idxs = C2.Transpose(max_q_act_blob) flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs) workspace.FeedBlob(OUTPUT_SINGLE_CAT_VALS_NAME, np.zeros(1, dtype=np.int64)) C2.net().Gather([action_names, flat_transposed_action_idxs], [OUTPUT_SINGLE_CAT_VALS_NAME]) workspace.FeedBlob(OUTPUT_SINGLE_CAT_LENGTHS_NAME, np.zeros(1, dtype=np.int32)) C2.net().ConstantFill( [shape_of_num_of_states], [OUTPUT_SINGLE_CAT_LENGTHS_NAME], value=2, dtype=caffe2_pb2.TensorProto.INT32, ) workspace.FeedBlob(OUTPUT_SINGLE_CAT_KEYS_NAME, np.zeros(1, dtype=np.int64)) output_keys_tensor, _ = C2.Concat( C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64), C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64), axis=0, ) output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0) C2.net().FlattenToVec([output_key_tile], [OUTPUT_SINGLE_CAT_KEYS_NAME]) workspace.CreateNet(net) return DQNPredictor(net, torch_init_net, parameters, int_features)
def export( cls, trainer, state_normalization_parameters, action_normalization_parameters, int_features=False, ): """ Creates a ContinuousActionDQNPredictor from a ContinuousActionDQNTrainer. :param trainer ContinuousActionDQNTrainer :param state_normalization_parameters state NormalizationParameters :param action_normalization_parameters action NormalizationParameters :param int_features boolean indicating if int features blob will be present """ # ensure state and action IDs have no intersection assert ( len( set(state_normalization_parameters.keys()) & set(action_normalization_parameters.keys()) ) == 0 ) model = model_helper.ModelHelper(name="predictor") net = model.net C2.set_model(model) workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32)) workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64)) workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32)) input_feature_lengths = "input_feature_lengths" input_feature_keys = "input_feature_keys" input_feature_values = "input_feature_values" if int_features: workspace.FeedBlob( "input/int_features.lengths", np.zeros(1, dtype=np.int32) ) workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64)) workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32)) C2.net().Cast( ["input/int_features.values"], ["input/int_features.values_float"], dtype=caffe2_pb2.TensorProto.FLOAT, ) C2.net().MergeMultiScalarFeatureTensors( [ "input/float_features.lengths", "input/float_features.keys", "input/float_features.values", "input/int_features.lengths", "input/int_features.keys", "input/int_features.values_float", ], [input_feature_lengths, input_feature_keys, input_feature_values], ) else: C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths]) C2.net().Copy(["input/float_features.keys"], [input_feature_keys]) C2.net().Copy(["input/float_features.values"], [input_feature_values]) parameters = [] state_normalized_dense_matrix, new_parameters = sparse_to_dense( input_feature_lengths, input_feature_keys, input_feature_values, state_normalization_parameters, None, ) parameters.extend(new_parameters) action_normalized_dense_matrix, new_parameters = sparse_to_dense( input_feature_lengths, input_feature_keys, input_feature_values, action_normalization_parameters, None, ) parameters.extend(new_parameters) state_action_normalized = "state_action_normalized" state_action_normalized_dim = "state_action_normalized_dim" net.Concat( [state_normalized_dense_matrix, action_normalized_dense_matrix], [state_action_normalized, state_action_normalized_dim], axis=1, ) new_parameters, q_values = RLPredictor._forward_pass( model, trainer, state_action_normalized, ["Q"] ) parameters.extend(new_parameters) flat_q_values_key = ( "output/string_weighted_multi_categorical_features.values.values" ) num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1]) q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1]) # Get 1 x n (number of examples) action index tensor under the max_q policy max_q_act_idxs = "max_q_policy_actions" C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs]) max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0) # Get 1 x n (number of examples) action index tensor under the softmax policy temperature = C2.NextBlob("temperature") parameters.append(temperature) workspace.FeedBlob( temperature, np.array([trainer.rl_temperature], dtype=np.float32) ) tempered_q_values = C2.Div(q_value_blob, temperature, broadcast=1) softmax_values = C2.Softmax(tempered_q_values) softmax_act_idxs_nested = "softmax_act_idxs_nested" C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested]) softmax_act_blob = C2.Tile( C2.FlattenToVec(softmax_act_idxs_nested), num_examples, axis=0 ) # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]] # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...] max_q_act_blob = C2.Cast(max_q_act_blob, to=caffe2_pb2.TensorProto.INT64) softmax_act_blob = C2.Cast(softmax_act_blob, to=caffe2_pb2.TensorProto.INT64) max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1]) softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob, shape=[1, -1]) C2.net().Append( [max_q_act_blob_nested, softmax_act_blob_nested], [max_q_act_blob_nested] ) transposed_action_idxs = C2.Transpose(max_q_act_blob_nested) flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs) output_values = "output/int_single_categorical_features.values" workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64)) C2.net().Copy([flat_transposed_action_idxs], [output_values]) output_lengths = "output/int_single_categorical_features.lengths" workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32)) C2.net().ConstantFill( [flat_q_values_key], [output_lengths], value=2, dtype=caffe2_pb2.TensorProto.INT32, ) output_keys = "output/int_single_categorical_features.keys" workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64)) output_keys_tensor, _ = C2.Concat( C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64), C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64), axis=0, ) output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0) C2.net().FlattenToVec([output_key_tile], [output_keys]) workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(net) return ContinuousActionDQNPredictor(net, parameters, int_features)