Esempio n. 1
0
    def create_eyes(self, mode=None, thing_to_look_at=None):
        if mode is None:
            mode = self.mode
        if thing_to_look_at is None:
            thing_to_look_at = self.thing_to_look_at
        self.thing_to_look_at = thing_to_look_at
        self.mode = mode
        looking_direction = None

        pi = PiCreature(mode=mode)
        eyes = VGroup(pi.eyes, pi.pupils)
        if self.submobjects:
            eyes.match_height(self)
            eyes.move_to(self, DOWN)
            looking_direction = self[1].get_center() - self[0].get_center()
        else:
            eyes.set_height(self.height)
            eyes.move_to(self.body.get_top(), DOWN)

        height = eyes.get_height()
        if thing_to_look_at is not None:
            pi.look_at(thing_to_look_at)
        elif looking_direction is not None:
            pi.look(looking_direction)
        eyes.set_height(height)

        return eyes
Esempio n. 2
0
    def get_eyes(self, mode=None, thing_to_look_at=None):
        mode = mode or self.mode
        if thing_to_look_at is None:
            thing_to_look_at = self.thing_looked_at

        pi = Randolph(mode=mode)
        eyes = VGroup(pi.eyes, pi.pupils)
        pi.scale(self.height / eyes.get_height())
        if self.submobjects:
            eyes.move_to(self, DOWN)
        else:
            eyes.move_to(self.mobject.get_top(), DOWN)
        if thing_to_look_at is not None:
            pi.look_at(thing_to_look_at)
        return eyes
Esempio n. 3
0
    def get_eyes(self, mode=None, thing_to_look_at=None):
        mode = mode or self.mode
        if thing_to_look_at is None:
            thing_to_look_at = self.thing_looked_at

        pi = Randolph(mode=mode)
        eyes = VGroup(pi.eyes, pi.pupils)
        pi.scale(self.height / eyes.get_height())
        if self.submobjects:
            eyes.move_to(self, DOWN)
        else:
            eyes.move_to(self.mobject.get_top(), DOWN)
        if thing_to_look_at is not None:
            pi.look_at(thing_to_look_at)
        return eyes
Esempio n. 4
0
    def get_secant_slope_group(
        self,
        x,
        graph,
        dx=None,
        dx_line_color=None,
        df_line_color=None,
        dx_label=None,
        df_label=None,
        include_secant_line=True,
        secant_line_color=None,
        secant_line_length=10,
    ):
        """
        Resulting group is of the form VGroup(
            dx_line,
            df_line,
            dx_label, (if applicable)
            df_label, (if applicable)
            secant_line, (if applicable)
        )
        with attributes of those names.
        """
        kwargs = locals()
        kwargs.pop("self")
        group = VGroup()
        group.kwargs = kwargs

        dx = dx or float(self.x_max - self.x_min) / 10
        dx_line_color = dx_line_color or self.default_input_color
        df_line_color = df_line_color or graph.get_color()

        p1 = self.input_to_graph_point(x, graph)
        p2 = self.input_to_graph_point(x + dx, graph)
        interim_point = p2[0] * RIGHT + p1[1] * UP

        group.dx_line = Line(p1, interim_point, color=dx_line_color)
        group.df_line = Line(interim_point, p2, color=df_line_color)
        group.add(group.dx_line, group.df_line)

        labels = VGroup()
        if dx_label is not None:
            group.dx_label = TexMobject(dx_label)
            labels.add(group.dx_label)
            group.add(group.dx_label)
        if df_label is not None:
            group.df_label = TexMobject(df_label)
            labels.add(group.df_label)
            group.add(group.df_label)

        if len(labels) > 0:
            max_width = 0.8 * group.dx_line.get_width()
            max_height = 0.8 * group.df_line.get_height()
            if labels.get_width() > max_width:
                labels.scale_to_fit_width(max_width)
            if labels.get_height() > max_height:
                labels.scale_to_fit_height(max_height)

        if dx_label is not None:
            group.dx_label.next_to(group.dx_line,
                                   np.sign(dx) * DOWN,
                                   buff=group.dx_label.get_height() / 2)
            group.dx_label.set_color(group.dx_line.get_color())

        if df_label is not None:
            group.df_label.next_to(group.df_line,
                                   np.sign(dx) * RIGHT,
                                   buff=group.df_label.get_height() / 2)
            group.df_label.set_color(group.df_line.get_color())

        if include_secant_line:
            secant_line_color = secant_line_color or self.default_derivative_color
            group.secant_line = Line(p1, p2, color=secant_line_color)
            group.secant_line.scale_in_place(secant_line_length /
                                             group.secant_line.get_length())
            group.add(group.secant_line)

        return group
Esempio n. 5
0
    def show_the_solution(self):
        # Prepare for the solution
        pre_solve = VGroup(*self.question[::2])
        self.play(
            ReplacementTransform(pre_solve, self.solve),
            FadeOut(self.question[1]),
            run_time = 1,
        )
        self.wait()

        # Manipulate LHS
        old_l_part, r_part = self.equation
        new_l_part = ExpTower(order = self.highest_order+1, is_infinite = True)
        new_l_part.match_height(old_l_part)
        new_l_part.next_to(r_part, LEFT, aligned_edge = DOWN)
        old_rect, new_rect = rects = [
            CoverRectangle(part, text = "2")
            for part in (old_l_part, new_l_part.get_exponent())
        ]
        old_two, new_two = twos = [
            rect.get_text_mob()
            for rect in rects
        ]
        self.play(DrawBorderThenFill(old_rect, run_time = 1))
        self.wait()
        self.play(
            ReplacementTransform(old_l_part, new_l_part),
            ReplacementTransform(old_rect, new_rect),
        )
        self.wait()
        new_equation = VGroup(new_l_part, r_part, new_rect)
        new_equation.generate_target()
        new_equation.target.scale(0.8)
        new_equation.target.shift(UP)
        self.play(MoveToTarget(new_equation))
        self.wait()

        # A little bit clean-up
        source_eq = VGroup(*[
            mob.copy()
            for mob in (new_l_part.get_base(), new_two, r_part[0], r_part[1])
        ])
        source_eq.generate_target()
        target_eq = TexMobject("x", "^2", "=", "2")
        target_eq.scale(3).next_to(source_eq, DOWN, buff = 1)
        for k, (old_part, new_part) in enumerate(zip(source_eq.target, target_eq)):
            old_part.move_to(new_part)
            if k == 1:
                old_part.scale(0.5)
                old_part.shift(RIGHT/4)
        self.play(
            FadeOut(new_rect),
            MoveToTarget(source_eq),
        )
        self.wait()

        # Reveal the final answer
        result = TexMobject("x", "=", "\\sqrt", "2")
        result.set_height(source_eq.get_height() * 0.7)
        result.move_to(source_eq)
        self.play(*[
            ReplacementTransform(source_eq[m], result[n], path_arc = angle)
            for m, n, angle in [(0, 0, 0), (1, 2, -TAU/3), (2, 1, 0), (3, 3, 0)]
        ])
        self.wait()
        qed = QEDSymbol()
        qed.next_to(result, RIGHT, aligned_edge = DOWN, buff = 1.5)
        self.play(FadeIn(qed))
        self.wait()