def train(cfg, local_rank, distributed):

    num_classes = COCODataset(cfg.data.train[0], cfg.data.train[1]).num_classes
    model = EfficientDet(num_classes=num_classes, model_name=cfg.model.name)
    inp_size = model.config['inp_size']
    device = torch.device(cfg.device)
    model.to(device)

    optimizer = build_optimizer(model, **optimizer_kwargs(cfg))
    lr_scheduler = build_lr_scheduler(optimizer, **lr_scheduler_kwargs(cfg))

    use_mixed_precision = cfg.dtype == "float16"
    amp_opt_level = 'O1' if use_mixed_precision else 'O0'
    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      opt_level=amp_opt_level)

    if distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[local_rank],
            output_device=local_rank,
            # this should be removed if we update BatchNorm stats
            broadcast_buffers=False,
            find_unused_parameters=True)

    arguments = {}
    arguments["iteration"] = 0
    output_dir = cfg.output_dir
    save_to_disk = comm.get_rank() == 0
    checkpointer = Checkpointer(model, optimizer, lr_scheduler, output_dir,
                                save_to_disk)
    extra_checkpoint_data = checkpointer.load(cfg.model.resume)
    arguments.update(extra_checkpoint_data)

    train_dataloader = build_dataloader(cfg,
                                        inp_size,
                                        is_train=True,
                                        distributed=distributed,
                                        start_iter=arguments["iteration"])

    test_period = cfg.test.test_period
    if test_period > 0:
        val_dataloader = build_dataloader(cfg,
                                          inp_size,
                                          is_train=False,
                                          distributed=distributed)
    else:
        val_dataloader = None

    checkpoint_period = cfg.solver.checkpoint_period
    log_period = cfg.solver.log_period

    do_train(cfg, model, train_dataloader, val_dataloader, optimizer,
             lr_scheduler, checkpointer, device, checkpoint_period,
             test_period, log_period, arguments)

    return model
Esempio n. 2
0
class Detect(object):
    """
        dir_name: Folder or image_file
    """
    def __init__(self, weights, num_class=21):
        super(Detect, self).__init__()
        self.weights = weights
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else 'cpu')
        self.transform = transforms.Compose([Normalizer(), Resizer()])
        self.model = EfficientDet(num_classes=num_class, is_training=False)
        self.model = self.model.to(self.device)
        if (self.weights is not None):
            print('Load pretrained Model')
            state_dict = torch.load(weights)
            self.model.load_state_dict(state_dict)

        self.model.eval()

    def process(self, file_name):
        img = cv2.imread(file_name)
        cv2.imwrite('kaka.png', img)
        img = self.transform(img)
        img = img.to(self.device)
        img = img.unsqueeze(0).permute(0, 3, 1, 2)
        scores, classification, transformed_anchors = self.model(img)
        print('scores: ', scores)
        scores = scores.detach().cpu().numpy()
        idxs = np.where(scores > 0.1)
        return idxs
Esempio n. 3
0
def main():
    args = parse_args()
    cfg = get_default_cfg()
    if args.config_file:
        cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    dataset = COCODataset(cfg.data.test[0], cfg.data.test[1])
    num_classes = dataset.num_classes
    label_map = dataset.labels
    model = EfficientDet(num_classes=num_classes, model_name=cfg.model.name)
    device = torch.device(cfg.device)
    model.to(device)
    model.eval()

    inp_size = model.config['inp_size']
    transforms = build_transforms(False, inp_size=inp_size)

    output_dir = cfg.output_dir
    checkpointer = Checkpointer(model, None, None, output_dir, True)
    checkpointer.load(args.ckpt)

    images = []
    if args.img:
        if osp.isdir(args.img):
            for filename in os.listdir(args.img):
                if is_valid_file(filename):
                    images.append(osp.join(args.img, filename))
        else:
            images = [args.img]

    for img_path in images:
        img = cv2.imread(img_path)
        img = inference(model,
                        img,
                        label_map,
                        score_thr=args.score_thr,
                        transforms=transforms)
        save_path = osp.join(args.save, osp.basename(img_path))
        cv2.imwrite(save_path, img)

    if args.vid:
        vCap = cv2.VideoCapture(args.v)
        fps = int(vCap.get(cv2.CAP_PROP_FPS))
        height = int(vCap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        width = int(vCap.get(cv2.CAP_PROP_FRAME_WIDTH))
        size = (width, height)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        save_path = osp.join(args.save, osp.basename(args.v))
        vWrt = cv2.VideoWriter(save_path, fourcc, fps, size)
        while True:
            flag, frame = vCap.read()
            if not flag:
                break
            frame = inference(model,
                              frame,
                              label_map,
                              score_thr=args.score_thr,
                              transforms=transforms)
            vWrt.write(frame)

        vCap.release()
        vWrt.release()