Esempio n. 1
0
def genKeys(primeLength):
   p = modmath.findPrime(primeLength);
   q = modmath.findPrime(primeLength);

   n = p*q;

   phi = (p-1)*(q-1);

   e = int(random.random()*(n-1)) + 1;
   eeres = modmath.ExtendedEuclidean(phi,e);
   while(eeres.gcd != 1):
      e = int(random.random()*(n-1)) + 1;
      eeres = modmath.ExtendedEuclidean(phi,e);

   d=0;
   if(phi < e):
      d = eeres.s;
   else:
      d =  eeres.t;

   while(d<0):
      d += phi;

   return KeyInfo(d,e,n);
Esempio n. 2
0
def genKeys(n,t):
   while(True): #Continue until a n-1 bit prime is found with 2*q+1 also prime
      q = modmath.findPrime(n-1, t/2);
      p = 2*q+1;
      if(modmath.isPrime(p, t/2)):
         break;

   g = random.randint(2,p-1); #Random integer to try as primtive
   while(not modmath.isPrimitive(g,q,p)):
      g = random.randint(2,p-1); #Continue looking for primitive

   x = random.randint(2,p-1); #Pick a secret value x
   h = modmath.modexp(g,x,p); #Compute public h

   pub = PublicKey(p,g,h) #Generate key objects
   priv = PrivateKey(p,g,x)

   return KeyResults(pub, priv)