Esempio n. 1
0
    def visibility_first_derivative(self, posix_time):
        """Calculate the derivative of the visibility function of the satellite and the site at a
        given time.

        Args:
            posix_time (float): The UNIX time to evaluate the derivative visibility function at.

        Returns:
            The value of the visibility function evaluated at the provided time.
        """

        # Since most helper functions don't play well with mpmath floats we have to perform a lossy
        # conversion.
        posix_time = float(posix_time)
        sat_pos_vel = np.array(
            self.sat_irp.interpolate(posix_time)) * mp.mpf(1.0)
        site_pos = np.array(self.site_ecef) * mp.mpf(1.0)

        pos_diff = np.subtract(sat_pos_vel[0], site_pos)
        vel_diff = sat_pos_vel[1]

        site_normal_pos = site_pos / mp.norm(site_pos)
        site_normal_vel = [0, 0, 0]

        first_term = mp.mpf(
            ((1.0 / mp.norm(pos_diff)) * (mp.fdot(vel_diff, site_normal_pos) +
                                          mp.fdot(pos_diff, site_normal_vel))))

        second_term = mp.mpf(((1.0 / mp.power(
            (mp.norm(pos_diff)), 3)) * mp.fdot(pos_diff, vel_diff) *
                              mp.fdot(pos_diff, site_normal_pos)))

        return first_term - second_term
Esempio n. 2
0
def rotate_mp(pts, x, y):
    out = mpm.zeros(pts.rows, pts.cols)
    v = x/mpm.norm(x) 
    cos = mpm.fdot(x,y) / (mpm.norm(x), mpm.norm(y))
    sin = mpm.sqrt(1.-cos**2)
    u = y - mpm.fdot(v, y) * v 

    mat = mpm.eye(x.cols) - u.T * u - v.T * v \
        + cos * u.T * u - sin * v.T * u + sin * u.T * v + cos * v.T * v
    return mat
Esempio n. 3
0
def poincare_reflect(a, x, c=1.0, precision=None):
    '''
    Spherical inversion (or "Poincare reflection") of a point x about a sphere
    with center at point "a", and radius = 1/c.
    '''
    if precision is not None:
        mpm.mp.dps = precision
    a2 = mpm.fdot(a, a)
    x2 = mpm.fdot(x, x)
    xa2 = x2 + a2 - 2 * mpm.fdot(x, a)
    r2 = a2 - 1. / c
    scal = mpm.fdiv(r2, xa2)
    return scal * (x - a) + a
Esempio n. 4
0
def rotate_3D_mp(x, y):
    xnorm = mpm.norm(x)
    ynorm = mpm.norm(y)
    cos = mpm.fdot(x,y)/(xnorm*ynorm)
    sin = mpm.sqrt(1.-cos**2)
    K = (y.T*x-x.T*y)/(xnorm*ynorm*sin)
    return mpm.eye(3) + sin*K + (1.-cos)*(K*K)
Esempio n. 5
0
def poincare_reflect0(z, x, c=1.0, precision=None):
    '''
    Spherical inversion (or "Poincare reflection") of a point x
    such that point z is mapped to the origin.
    '''
    if precision is not None:
        mpm.mp.dps = precision
    # the reflection is poincare_reflect(a, x) where
    # a = c * z / |z|**2
    z2 = mpm.fdot(z, z)
    zscal = c / z2
    x2 = mpm.fdot(x, x)
    a2 = c * zscal
    r2 = a2 - 1. / c
    xa2 = x2 + a2 - 2 * zscal * mpm.fdot(z, x)
    scal = mpm.fdiv(r2, xa2)
    return scal * (x - zscal * z) + zscal * z
Esempio n. 6
0
 def myfunction(M):
     """
     sum of matrix elements
     """
     if isinstance(M, np.ndarray):
         return sum(sum(M))
     else:
         assert isinstance(M, (mp.iv.matrix)), "type {}".format(type(M))
         return mp.fdot(M, mp.iv.ones(len(M)))
Esempio n. 7
0
 def __div__(self, B):
     if self.onlyNP == True and (type(B) == int or type(B) == float):
         return Matrix(np.divide(self.NP, B).tolist(), onlyNP=True)
     elif self.onlyNP == True and (type(B) == int
                                   or isinstance(B, np.float64)):
         return Matrix(np.divide(self.NP, B).tolist(), onlyNP=True)
     elif self.onlyNP == True and (type(B) == int or type(B) == float):
         f = mpmath.fraction(1, B)
         return Matrix(mpmath.fdot(self.MP, f).tolist(), onlyMP=True)
Esempio n. 8
0
def poincare_dist(x, y, c=1.0, precision=None):
    ''' 
    The hyperbolic distance between points in the Poincare model with curvature -1/c 
        Args:
            x, y: size 1xD mpmath matrix representing point in the D-dimensional ball |x| < 1
            precision (int): bits of precision to use
        Returns:
            mpmath float object. Can be converted back to regular float
    '''
    if precision is not None:
        mpm.mp.dps = precision
    x2 = mpm.fdot(x, x)
    y2 = mpm.fdot(y, y)
    xy = mpm.fdot(x, y)
    sqrt_c = mpm.sqrt(c)
    denom = 1 - 2 * c * xy + c**2 * x2 * y2
    norm = mpm.norm(
        (-(1 - 2 * c * xy + c * y2) * x + (1. - c * x2) * y) / denom)
    return 2 / sqrt_c * mpm.atanh(sqrt_c * norm)
Esempio n. 9
0
def psi(t, eigenvalues, coefficients, f0=mp.mpf("1.0")):
    '''The nearly periodic function'''
    f = None

    if len(eigenvalues) == len(coefficients):
        f = [mp.expj(E*t) for E in eigenvalues]
        f = mp.fdot(coefficients, f)
        f = mp.fabs(f - f0)

    return(f)
Esempio n. 10
0
    def point_plane_distance(self, point: Point):
        '''
        calculates point distance from the plane
        :param point: list or numpy array
        :return: err, distance
        distance = (a*x0 + b*y0 + c*z0 + d)/ sqrt(a**2 + b**2 + c**2)
        '''

        numerator = mpmath.fdot(self.abcd, HmPoint.from_point(point).xyzw)
        denominator = mpmath.sqrt(self.nv.dot(self.nv))
        distance = numerator / denominator

        return distance
Esempio n. 11
0
    def visibility(self, posix_time):
        """Calculate the visibility function of the satellite and the site at a given time.

        Args:
            posix_time (float): The time to evaluate the visibility function at

        Returns:
            The value of the visibility function evaluated at the provided time.

        Note:
            This function assumes the FOV of the sensors on the satellite are 180 degrees
        """

        # Since most helper functions don't play well with mpmath floats we have to perform a lossy
        # conversion.
        posix_time = float(posix_time)
        site_pos = np.array(self.site_ecef) * mp.mpf(1.0)
        site_normal_pos = site_pos / mp.norm(site_pos)
        sat_pos = self.sat_irp.interpolate(posix_time)[0]
        sat_site = np.subtract(sat_pos, site_pos)

        return mp.mpf(mp.fdot(sat_site, site_normal_pos) / mp.norm(sat_site))
Esempio n. 12
0
    def remezStep(self, control):
        # eval at control points
        fxn = mp.matrix([self.evalFunc(c) for c in control])

        # create linear system with chebyshev polynomials
        size = self.order + 2
        system = mp.zeros(size)
        for n in range(self.order + 1):
            for i in range(self.order + 2):
                system[i, n] = mp.chebyt(n, control[i])

        # last column is oscillating error
        for i in range(size):
            sign = -1 if ((i & 1) == 0) else +1
            scale = 0.0 if i in [0, size - 1] else 1.0
            system[i, size -
                   1] = sign * scale * mp.fabs(self.evalWeight(control[i]))
        #print(system)

        # solve the system
        solved = system**-1
        #print(solved)

        # compute polynomial estimate (as Chebyshev weights)
        weights = vzeros(size - 1)
        for n in range(size - 1):
            weights[n] = mp.fdot(solved[n, :], fxn)
        #print(f'  weights: {weights}')

        # estimate error
        # self.weights = weights
        # est = [self.evalEstimate(x) for x in control]
        # print('  est:', est)
        # print('  fxn:', fxn.T)

        return weights
Esempio n. 13
0
 def __mul__(self, B):
     #print(type(B))
     if type(B) == float or type(B) == int or type(B) == np.float64 or type(
             B) == np.complex128:
         if self.onlyNP == True:
             return Matrix(np.dot(self.NP, B).tolist(), onlyNP=True)
         elif self.Sparse == True:
             return Matrix(self.S * B, Sparse=True)
     elif self.onlyNP == True and B.onlyNP == True:
         if (type(np.dot(self.NP, B.NP).tolist()) == float
                 or type(np.dot(self.NP, B.NP).tolist()) == int):
             return (np.dot(self.NP, B.NP).tolist())
         else:
             return Matrix(np.dot(self.NP, B.NP).tolist(), onlyNP=True)
     elif self.onlyMP == True and B.onlyMP == True:
         return Matrix(mpmath.fdot(self.MP, B.MP).tolist(), onlyMP=True)
     elif self.Sparse == True and B.Sparse == True:
         #print(self.S.shape)
         #print(B.S.shape)
         M = self.S * B.S
         if M.shape == (1, 1):
             return float(M.todense())
         else:
             return Matrix(self.S * B.S, Sparse=True)
Esempio n. 14
0
    def initRemez(self):
        #print('Remez.init()')

        # constants for domain
        (xMin, xMax) = self.domain
        self.k1 = (xMax + xMin) * 0.5
        self.k2 = (xMax - xMin) * 0.5

        # initial estimates for function roots (where error == 0.0)
        size = self.order + 1
        roots = vzeros(size)
        fxn = vzeros(size)
        # \todo [petri] use linspace
        for i in range(size):
            roots[i] = (2.0 * i - self.order) / size
            fxn[i] = self.evalFunc(roots[i])

        # build matrix of Chebyshev evaluations
        system = mp.zeros(size)
        for order in range(size):
            for i in range(size):
                system[i, order] = mp.chebyt(order, roots[i])

        # solve system
        solved = system**-1

        # compute Chebyshev weights of new approximation
        weights = vzeros(size)
        for n in range(size):
            weights[n] = mp.fdot(solved[n, :], fxn)
        #print(f'  weights: {weights.T}')

        # store roots & weights
        self.roots = roots
        self.weights = weights
        self.maxError = 1000.0
Esempio n. 15
0
 def dot(self, other_vector):
     return mpmath.fdot(self.abc, other_vector.abc)
Esempio n. 16
0
 def magnitude(self):
     p = mpmath.fdot(self.abc, self.abc)
     return mpmath.sqrt(p)
Esempio n. 17
0
 def dot(self, other_vector):
     return mpmath.fdot(self.xyzw, other_vector.xyzw)