Esempio n. 1
0
    def validate_nonbinary_trees(self, n):
        demographic_events = [
            msprime.SimpleBottleneck(0.02, 0, proportion=0.25),
            msprime.SimpleBottleneck(0.2, 0, proportion=1)]

        for seed in range(1, 10):
            ts = msprime.simulate(
                n, random_seed=seed, demographic_events=demographic_events)
            # Check if this is really nonbinary
            found = False
            for edgeset in ts.edgesets():
                if len(edgeset.children) > 2:
                    found = True
                    break
            self.assertTrue(found)
            tree1 = ts.first()

            ts = msprime.simulate(
                n, random_seed=seed + 1, demographic_events=demographic_events)
            tree2 = ts.first()
            self.assertAlmostEqual(
                tsinfer.kc_distance(tree1, tree2), kc_distance(tree1, tree2))
            self.assertAlmostEqual(
                tsinfer.kc_distance(tree2, tree1), kc_distance(tree2, tree1))
            # compare to a binary tree also
            tree2 = msprime.simulate(n, random_seed=seed + 1).first()
            self.assertAlmostEqual(
                tsinfer.kc_distance(tree1, tree2), kc_distance(tree1, tree2))
            self.assertAlmostEqual(
                tsinfer.kc_distance(tree2, tree1), kc_distance(tree2, tree1))
Esempio n. 2
0
 def test_nonbinary_trees(self):
     bottlenecks = [
         msprime.SimpleBottleneck(0.01, 0, proportion=0.05),
         msprime.SimpleBottleneck(0.02, 0, proportion=0.25),
         msprime.SimpleBottleneck(0.03, 0, proportion=1)]
     ts = msprime.simulate(
         10, length=100, recombination_rate=1,
         demographic_events=bottlenecks, random_seed=1)
     self.verify_tree_sequence(ts)
Esempio n. 3
0
 def test_three_populations_no_migration_recombination(self):
     seed = 1234
     ts1 = msprime.simulate(
         population_configurations=[
             msprime.PopulationConfiguration(10),
             msprime.PopulationConfiguration(10),
             msprime.PopulationConfiguration(10),
         ],
         migration_matrix=np.zeros((3, 3)),
         recombination_rate=0.5,
         end_time=0.1,
         random_seed=seed,
     )
     ts2 = msprime.simulate(
         population_configurations=[
             msprime.PopulationConfiguration(),
             msprime.PopulationConfiguration(),
             msprime.PopulationConfiguration(),
         ],
         migration_matrix=np.zeros((3, 3)),
         from_ts=ts1,
         recombination_rate=0.5,
         demographic_events=[
             msprime.SimpleBottleneck(time=0.5,
                                      population=0,
                                      proportion=1.0),
             msprime.SimpleBottleneck(time=0.5,
                                      population=1,
                                      proportion=1.0),
             msprime.SimpleBottleneck(time=0.5,
                                      population=2,
                                      proportion=1.0),
             msprime.MassMigration(0.61, 1, 0, 1.0),
             msprime.MassMigration(0.61, 2, 0, 1.0),
             msprime.SimpleBottleneck(0.61, population=0, proportion=1.0),
         ],
         random_seed=seed,
     )
     self.assertGreater(ts2.num_trees, 1)
     for tree in ts2.trees():
         # We should have three children at the root, and every node below
         # should be in one population.
         root_children = tree.children(tree.root)
         self.assertEqual(len(root_children), 3)
         populations = {ts2.node(u).population: u for u in root_children}
         self.assertEqual(len(populations), 3)
         for pop in [0, 1, 2]:
             for node in tree.nodes(populations[pop]):
                 self.assertEqual(ts2.node(node).population, pop)
Esempio n. 4
0
def get_bottleneck_examples():
    """
    Returns an iterator of example tree sequences with nonbinary
    trees.
    """
    bottlenecks = [
        msprime.SimpleBottleneck(0.01, 0, proportion=0.05),
        msprime.SimpleBottleneck(0.02, 0, proportion=0.25),
        msprime.SimpleBottleneck(0.03, 0, proportion=1)]
    for n in [3, 10, 100]:
        ts = msprime.simulate(
            n, length=100, recombination_rate=1,
            demographic_events=bottlenecks,
            random_seed=n)
        yield ts
Esempio n. 5
0
File: dev.py Progetto: td329/msprime
def subset_samples(n, samples):
    demographic_events = [msprime.SimpleBottleneck(1000, 0.15)]
    demographic_events = []
    ts = msprime.simulate(sample_size=n,
                          Ne=1e4,
                          length=1e4,
                          recombination_rate=5e-8,
                          mutation_rate=2e-8,
                          random_seed=5,
                          demographic_events=demographic_events)
    # ts = msprime.load(sys.argv[1])

    subset = ts.subset(samples)

    #     print("starting subsetting", len(samples))
    #     before = time.clock()
    #     subset = ts.subset(samples)
    #     duration = time.clock() - before
    #     print("Subsetting done", duration)

    all_trees = ts.trees()
    full_tree = next(all_trees)
    for subset_tree in subset.trees():
        while full_tree.get_interval()[1] <= subset_tree.get_interval()[1]:
            # print(full_tree.get_interval(), subset_tree.get_interval())
            for u, v in itertools.combinations(range(len(samples)), 2):
                # print(u, v, samples[u], samples[v])
                t_mrca1 = full_tree.get_tmrca(samples[u], samples[v])
                t_mrca2 = subset_tree.get_tmrca(u, v)
                assert t_mrca1 == t_mrca2
            full_tree = next(all_trees, None)
            if full_tree is None:
                break
Esempio n. 6
0
 def test_v2_non_binary_records(self):
     demographic_events = [
         msprime.SimpleBottleneck(time=0.01, population=0, proportion=1)
     ]
     ts = msprime.simulate(sample_size=10,
                           demographic_events=demographic_events,
                           random_seed=1)
     self.assertRaises(ValueError, tskit.dump_legacy, ts, self.temp_file, 2)
Esempio n. 7
0
def bottleneck_example():
    return msprime.simulate(
        random_seed=1,
        sample_size=100,
        recombination_rate=0.1,
        length=10,
        demographic_events=[
            msprime.SimpleBottleneck(time=0.01, proportion=0.75)])
Esempio n. 8
0
 def test_smc_bottlenecks(self):
     # TODO we should have a better exception here.
     for model in ["smc", "smc_prime"]:
         self.assertRaises(
             _msprime.InputError, msprime.simulate, 10, model=model,
             demographic_events=[msprime.SimpleBottleneck(1)])
         self.assertRaises(
             _msprime.InputError, msprime.simulate, 10, model=model,
             demographic_events=[msprime.InstantaneousBottleneck(1)])
Esempio n. 9
0
 def get_nonbinary_tree(self):
     demographic_events = [
         msprime.SimpleBottleneck(time=0.1, population=0, proportion=0.5)]
     ts = msprime.simulate(
         10, recombination_rate=5, mutation_rate=10,
         demographic_events=demographic_events, random_seed=1)
     for t in ts.trees():
         for u in t.nodes():
             if len(t.children(u)) > 2:
                 return t
     assert False
Esempio n. 10
0
 def test_v2_non_binary_records(self):
     demographic_events = [
         msprime.SimpleBottleneck(time=0.01, proportion=1)
     ]
     ts = msprime.simulate(
         sample_size=10,
         demographic_events=demographic_events,
         random_seed=1)
     with tempfile.NamedTemporaryFile() as f:
         self.assertRaises(
             ValueError, msprime.dump_legacy, ts, f.name)
Esempio n. 11
0
 def test_different_types(self):
     events = [
         msprime.PopulationParametersChange(time=1, initial_size=1),
         msprime.MigrationRateChange(time=1, rate=1),
         msprime.MassMigration(time=1, source=1),
         msprime.SimpleBottleneck(time=1)
     ]
     for a, b in itertools.combinations(events, 2):
         self.assertFalse(models.demographic_events_equal([a], [b], 1))
         self.assertFalse(models.demographic_events_equal([b], [a], 1))
         self.assertTrue(models.demographic_events_equal([a], [a], 1))
         self.assertTrue(models.demographic_events_equal([b], [b], 1))
Esempio n. 12
0
 def get_nonbinary_example(self):
     ts = msprime.simulate(
         sample_size=20, recombination_rate=10, random_seed=self.random_seed,
         demographic_events=[
             msprime.SimpleBottleneck(time=0.5, population=0, proportion=1)])
     # Make sure this really has some non-binary nodes
     found = False
     for e in ts.edgesets():
         if len(e.children) > 2:
             found = True
             break
     self.assertTrue(found)
     return ts
Esempio n. 13
0
def get_non_binary_tree(n):
    demographic_events = [
        msprime.SimpleBottleneck(time=0.1, population=0, proportion=0.5)
    ]
    ts = msprime.simulate(n,
                          demographic_events=demographic_events,
                          random_seed=3)
    tree = ts.first()
    found = False
    for u in tree.nodes():
        if len(tree.children(u)) > 2:
            found = True
    assert found
    return tree
Esempio n. 14
0
 def test_models_demographic_events(self):
     Ne = 10000
     ts = msprime.simulate(
         Ne=Ne,
         sample_size=10,
         recombination_rate=0.1,
         demographic_events=[
             msprime.SimulationModelChange(10,
                                           msprime.StandardCoalescent(Ne)),
             msprime.SimpleBottleneck(11, population=0, proportion=1.0),
         ],
         random_seed=10,
     )
     for tree in ts.trees():
         self.assertEqual(tree.num_roots, 1)
         self.assertEqual(ts.node(tree.root).time, 11)
Esempio n. 15
0
 def f(time=1, population=1, proportion=1):
     return msprime.SimpleBottleneck(
         time=time, population=population, proportion=proportion)
Esempio n. 16
0
 def test_simple_bottleneck(self):
     examples = [
         msprime.SimpleBottleneck(time=10, population=2),
         msprime.SimpleBottleneck(time=10, population=2, proportion=0.5),
     ]
     self.assert_repr_round_trip(examples)