def play(self, mocap_filepath): from mujoco_py import load_model_from_xml, MjSim, MjViewer curr_path = getcwd() xmlpath = '/mujoco/humanoid_deepmimic/envs/asset/dp_env_v2.xml' with open(curr_path + xmlpath) as fin: MODEL_XML = fin.read() model = load_model_from_xml(MODEL_XML) sim = MjSim(model) viewer = MjViewer(sim) self.read_raw_data(mocap_filepath) self.convert_raw_data() from time import sleep phase_offset = np.array([0.0, 0.0, 0.0]) while True: for k in range(len(self.data)): tmp_val = self.data_config[k] sim_state = sim.get_state() sim_state.qpos[:] = tmp_val[:] sim_state.qpos[:3] += phase_offset[:] sim.set_state(sim_state) sim.forward() viewer.render() sim_state = sim.get_state() phase_offset = sim_state.qpos[:3] phase_offset[2] = 0
class MujocoSimulation(Simulation): def __init__(self, name, total_time=1000, recording_time=[0, 1000]): super(MujocoSimulation, self).__init__(name, total_time=total_time, recording_time=recording_time) self.model = load_model_from_path('mujoco_xmls/' + name + '.xml') self.sim = MjSim(self.model) self.initial_state = self.sim.get_state() self.input_size = len(self.sim.data.ctrl) self.reset() self.viewer = None def reset(self): super(MujocoSimulation, self).reset() self.sim.set_state(self.initial_state) def run(self, reset=True): if reset: self.reset() self.sim.set_state(self.initial_state) for i in range(self.total_time): self.sim.data.ctrl[:] = self.ctrl_array[i] self.sim.step() self.trajectory.append(self.sim.get_state()) self.alreadyRun = True def get_trajectory(self, all_info=True): if not self.alreadyRun: self.run() if all_info: return self.trajectory.copy() else: return [x.qpos for x in self.trajectory] def get_recording(self, all_info=True): traj = self.get_trajectory(all_info=all_info) return traj[self.recording_time[0]:self.recording_time[1]] def watch(self, repeat_count=4): if self.viewer is None: self.viewer = MjViewer(self.sim) for _ in range(repeat_count): self.sim.set_state(self.initial_state) for i in range(self.total_time): self.sim.data.ctrl[:] = self.ctrl_array[i] self.sim.step() self.viewer.render() self.run( reset=False ) # so that the trajectory will be compatible with what user watches
def find_contact_height(sim: mj.MjSim, iterations: int = 10) -> float: """ Find the height we should put our walker at so we are just barely in contact with the ground. Runs a binary search on height (assumed to be state[1][2]) such that the body with the minimum z coordinate on the ground is just barely in contact with the ground. Args: sim: the instantiated sim MjSim object you want to find the correct height for iterations: number of times to run_util the binary search Returns: just the height as a float, you'll need to set it yourself """ state = sim.get_state() height_guess = state[1][1] step = height_guess * 2 # upper range for how much we will search for for _ in range(iterations): if sim.data.ncon: # ncon is the number of collisions height_guess += step else: height_guess -= step state[1][1] = height_guess sim.set_state(state) sim.forward() step /= 2 return height_guess
def _setup_render_rgb(sim: mujoco_py.MjSim) -> mujoco_py.MjSim: # create copy of simulation to customize rendering context # flags defined in mjvisualize.h render_sim = mujoco_py.MjSim(sim.model) render_sim.set_state(sim.get_state()) render_ctx = mujoco_py.MjRenderContextOffscreen(render_sim) render_ctx.scn.stereo = 2 # side-by-side rendering return render_sim
def run_activations_fcn(est_activations, model_ver=0, timestep=0.005, Mj_render=False): #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! the q0 is now the chasis pos. needs to be fixed """ this function runs the predicted activations generatred from running the inverse map on the desired task kinematics """ #loading data #print("loading data") #task_kinematics=np.load("task_kinematics.npy") #est_task_activations=np.load("est_task_activations.npy") model = load_model_from_path( "./models/nmi_leg_w_chassis_v{}.xml".format(model_ver)) sim = MjSim(model) if Mj_render: viewer = MjViewer(sim) # viewer.cam.fixedcamid += 1 # viewer.cam.type = const.CAMERA_FIXED sim_state = sim.get_state() control_vector_length = sim.data.ctrl.__len__() print("control_vector_length: " + str(control_vector_length)) number_of_task_samples = est_activations.shape[0] real_attempt_positions = np.zeros((number_of_task_samples, 2)) real_attempt_activations = np.zeros((number_of_task_samples, 3)) chassis_pos = np.zeros(number_of_task_samples, ) sim.set_state(sim_state) for ii in range(number_of_task_samples): sim.data.ctrl[:] = est_activations[ii, :] sim.step() current_positions_array = sim.data.qpos[-2:] # current_kinematics_array=np.array( # [sim.data.qpos[0], # sim.data.qvel[0], # sim.data.qacc[0], # sim.data.qpos[1], # sim.data.qvel[1], # sim.data.qacc[1]] # ) chassis_pos[ii] = sim.data.get_geom_xpos("Chassis_frame")[0] real_attempt_positions[ii, :] = current_positions_array real_attempt_activations[ii, :] = sim.data.ctrl if Mj_render: viewer.render() real_attempt_kinematics = positions_to_kinematics_fcn( real_attempt_positions[:, 0], real_attempt_positions[:, 1], timestep=0.005) return real_attempt_kinematics, real_attempt_activations, chassis_pos
def test_dampingControl(): model = load_model_from_path("robot.xml") sim = MjSim(model) viewer = MjViewer(sim) timestep = generatePatternedTrajectories.TIMESTEP control_freq = 1/timestep total_time = 2 num_cycles = int(total_time * control_freq) plt.ion() LW = 1.0 fig = plt.figure(figsize=(4,15)) axes = [] lines = [] goals = [] for i in range(7): axes.append(fig.add_subplot(7,1,i+1)) lines.append(axes[i].plot([],[],'b-', lw=LW)[0]) goals.append(axes[i].plot([],[],'r-', lw=LW)[0]) axes[i].set_ylim([-1, 1]) axes[i].set_xlim([0,total_time]) axes[i].set_ylabel("Angle{}(rad)".format(i), fontsize=8) axes[i].set_xlabel("Time(s)", fontsize=8) for test in range(5): q_init = bounds.getRandPosInBounds() qd_goal = np.zeros(7) qd_init = np.random.rand(7) for g in range(7): goals[g].set_ydata(np.ones(num_cycles) * qd_goal[g]) goals[g].set_xdata(np.linspace(0,3,num_cycles)) sim.set_state(MjSimState(time=0,qpos=q_init,qvel=qd_init,act=None,udd_state={})) sim.step() sim_time = 0 for i in range(num_cycles): state = sim.get_state() q = state[1] qd = state[2] sim.data.ctrl[:] = controllers.dampingControl(qd=qd) sim.step() viewer.render() if i % 35 == 0: for a in range(7): lines[a].set_xdata(np.append(lines[a].get_xdata(), sim_time)) lines[a].set_ydata(np.append(lines[a].get_ydata(), qd[a])) fig.canvas.draw() fig.canvas.flush_events() sim_time += timestep if bounds.outOfBounds(q): break for i in range(7): lines[i].set_xdata([]) lines[i].set_ydata([]) time.sleep(1)
def run_activations_fcn(MuJoCo_model_name, est_activations, timestep=0.01, Mj_render=False): #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! the q0 is now the chasis pos. needs to be fixed """ this function runs the predicted activations generatred from running the inverse map on the desired task kinematics """ #loading data #print("loading data") #task_kinematics=np.load("task_kinematics.npy") #est_task_activations=np.load("est_task_activations.npy") MuJoCo_model = load_model_from_path("./models/"+MuJoCo_model_name) sim = MjSim(MuJoCo_model) if Mj_render: viewer = MjViewer(sim) # to move it to the mounted camera viewer.cam.fixedcamid += 1 viewer.cam.type = const.CAMERA_FIXED # # to record the video # viewer._record_video = True # # recording path # viewer._video_path = "~/Documents/"+str(time.localtime()[3])+str(time.localtime()[4])+str(time.localtime()[5]) sim_state = sim.get_state() control_vector_length=sim.data.ctrl.__len__() #print("control_vector_length: "+str(control_vector_length)) number_of_task_samples=est_activations.shape[0] real_attempt_positions = np.zeros((number_of_task_samples,2)) real_attempt_activations = np.zeros((number_of_task_samples,3)) chassis_pos=np.zeros(number_of_task_samples,) sim.set_state(sim_state) for ii in range(number_of_task_samples): sim.data.ctrl[:] = est_activations[ii,:] sim.step() current_positions_array = sim.data.qpos[-2:] # current_kinematics_array=np.array( # [sim.data.qpos[0], # sim.data.qvel[0], # sim.data.qacc[0], # sim.data.qpos[1], # sim.data.qvel[1], # sim.data.qacc[1]] # ) chassis_pos[ii]=sim.data.get_geom_xpos("Chassis_frame")[0] real_attempt_positions[ii,:] = current_positions_array real_attempt_activations[ii,:] = sim.data.ctrl if Mj_render: viewer.render() real_attempt_kinematics = positions_to_kinematics_fcn( real_attempt_positions[:,0], real_attempt_positions[:,1], timestep = 0.01) return real_attempt_kinematics, real_attempt_activations, chassis_pos
def _setup_render_depth(sim: mujoco_py.MjSim) -> mujoco_py.MjSim: # create copy of simulation to customize rendering context # flags defined in mjvisualize.h render_sim = mujoco_py.MjSim(sim.model) render_sim.set_state(sim.get_state()) render_ctx = mujoco_py.MjRenderContextOffscreen(render_sim) render_ctx.vopt.flags[1] = 0 # textures off render_ctx.scn.flags[0] = 0 # shadow off render_ctx.scn.flags[2] = 0 # reflection off render_ctx.scn.flags[4] = 0 # skybox off render_ctx.scn.stereo = 2 # side-by-side rendering return render_sim
class MyEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self): self.model = load_model_from_path("xmls/Tesrt.xml") self.sim = MjSim(self.model) self.viewer = None self.sim_state = self.sim.get_state() self.bodynames = [ 'torso1', 'head', 'uwaist', 'lwaist', 'butt', 'right_thigh1', 'right_shin1', 'right_foot_cap1', 'right_foot_cap2', 'left_thigh1', 'left_shin1', 'left_foot_cap1', 'left_foot_cap2', 'right_uarm1', 'right_larm', 'right_hand', 'left_uarm1', 'left_larm', 'left_hand' ] ones_act = np.ones(len(self.sim.data.ctrl)) ones_obs = np.ones(self._get_state().shape[0]) self.action_space = spaces.Box(-ones_act, ones_act) self.observation_space = spaces.Box(-ones_obs, ones_obs) def _get_state(self): torso = [] ret = [] for i in range(len(self.bodynames)): vec = self.sim.data.get_geom_xpos(self.bodynames[i]) if i==0: ret = vec torso = vec if i!=0: ret = np.append(ret, vec-torso) return ret def _get_reward(self): return self.sim.data.get_geom_xpos('head')[2] def _step(self, action): for i in range(len(action)): self.sim.data.ctrl[i] = action[i] * 0.5 self.sim.step() self.sim.step() return self._get_state(),self._get_reward(),False,{} def _reset(self): self.sim.set_state(self.sim_state) return self._get_state() def _render(self, mode = 'human', close = False): if self.viewer is None: self.viewer = MjViewer(self.sim) self.viewer.render()
def test_cycle_through_orientations(): panda_kinematics = ikpy_panda_kinematics.panda_kinematics() model = load_model_from_path("robot.xml") sim = MjSim(model) viewer = MjViewer(sim) x_target, y_target, z_target = 0.2, 0.0, 0.5 step1 = np.linspace(0,np.pi/2, 100) step2 = np.linspace(np.pi/2, -np.pi/2, 200) step3 = np.linspace(-np.pi/2, 0, 100) sweep = np.concatenate((step1, step2, step3)) roll = 0 pitch = 0 yaw = np.pi ee_goal = [x_target, y_target, z_target, roll, pitch, yaw] qinit = panda_kinematics.inverse_kinematics(translation=ee_goal[0:3], rpy=ee_goal[3:6]) sim.set_state(MjSimState(time=0,qpos=qinit,qvel=np.zeros(7),act=None,udd_state={})) sim.step() qgoal = qinit q = qinit qd = np.zeros(7) count = -1 num_steps_per_change = 4 for i in range(num_steps_per_change * 400): if i % num_steps_per_change == 0: count += 1 ee_goal = [x_target, y_target, z_target, roll, pitch, sweep[count] + yaw] qgoal = panda_kinematics.inverse_kinematics(translation=ee_goal[0:3], rpy=ee_goal[3:6], init_qpos=q) R1 = panda_kinematics.euler_angles_to_rpy_rotation_matrix(rpy=[roll, pitch, sweep[count] + yaw]) R2 = panda_kinematics.euler_angles_to_rpy_rotation_matrix(panda_kinematics.forward_kinematics(qgoal)[3:6]) # R3 = sim.data.body_xmat[sim.model.body_name2id("right_hand")].reshape(3, 3) print("R1:\n", R1) print("R2:\n", R2) # print("R3:\n", R3) print("EE:", np.around(ee_goal, 3)) print("q: ", np.around(qgoal, 3)) state = sim.get_state() q = state[1] qd = state[2] sim.data.ctrl[:] = controllers.PDControl(q=q,qd=qd,qgoal=qgoal) sim.step() viewer.render() time.sleep(1)
class Mujoco_Renderer(): def __init__(self, mujoco_xml, hp): from mujoco_py import load_model_from_path, MjSim mujoco_xml = '/'.join(str.split(gcp.__file__, '/')[:-1]) + '/' + mujoco_xml self.sim = MjSim(load_model_from_path(mujoco_xml)) self._hp = hp def render(self, qpos): sim_state = self.sim.get_state() sim_state.qpos[:2] = qpos sim_state.qvel[:] = np.zeros_like(self.sim.data.qvel) self.sim.set_state(sim_state) self.sim.forward() subgoal_image = self.sim.render(self._hp.mpar.img_sz, self._hp.mpar.img_sz, camera_name='maincam') # plt.imshow(subgoal_image) # plt.savefig('test.png') return subgoal_image
class ArmTaskEnv: """ States: sensors Actions: actuators """ def __init__(self, model_file): # Load model to MuJoCo self.model_file = model_file self.mj_model = load_model_from_path(model_file) self.sim = MjSim(self.mj_model) #self.sim = mujoco.Physics.from_xml_path(model_file) # Parse state and action spaces self.state_dim = len(self.sim.data.sensordata) self.action_dim = len(self.sim.data.ctrl) # Rendering self.viewer = None def reset(self): self.sim.reset() def step(self, action): # Assign action to actuators self.sim.data.ctrl[:] = action.copy() # Simulate step self.sim.step() # Get next state next_state = self.sim.data.sensordata.copy() return next_state def render(self): if self.viewer is None: self.viewer = MjViewer(self.sim) self.viewer.render() @property def time(self): return self.sim.get_state().time
def __init__(self, sparse_reward=True, horizon=250): #print(horizon) self.sparse_reward = sparse_reward model = load_model_from_path("difficult-point.xml") sim = MjSim(model) self.sim = sim viewer = MjViewer(sim) self.init_state = sim.get_state() self.model = model self.viewer = viewer self.action_dim = len(self.sim.data.ctrl) self.obs_dim = len(self.get_obs()) high = np.array([np.inf] * self.obs_dim) # self.action_space = spaces.Box(np.array([-1, -1, -1, -1]), np.array([1, 1, 1, 1]), dtype=np.float32) self.observation_space = spaces.Box(-high, high, dtype=np.float32) high = np.array([2.0] * self.action_dim) self.action_space = spaces.Box(-high, high, dtype=np.float32) self.metadata = None self.horizon = horizon self.cur_step = 0
def mp_test_states(): sim = MjSim(load_model_from_xml(BASIC_MODEL_XML)) states = [] for val in range(3): sim.data.qpos[:3] = val * 0.1 states.append(sim.get_state()) pool = MjRenderPool(sim.model, n_workers=3) images = pool.render(100, 100, states=states[:2]) assert images.shape == (2, 100, 100, 3) compare_imgs(images[0], 'test_render_pool.mp_test_states.1.png') compare_imgs(images[1], 'test_render_pool.mp_test_states.2.png') states = list(reversed(states)) images = pool.render(100, 100, states=states) assert images.shape == (3, 100, 100, 3) compare_imgs(images[0], 'test_render_pool.mp_test_states.3.png') compare_imgs(images[1], 'test_render_pool.mp_test_states.4.png') compare_imgs(images[2], 'test_render_pool.mp_test_states.5.png')
class FastResetMujocoEnv(MujocoEnv): """Only loads the mujoco XML file once to allow for quicker resets.""" def _reset_internal(self): """Resets simulation internal configurations.""" # instantiate simulation from MJCF model self._load_model() if not hasattr(self, "mjpy_model"): self.mjpy_model = self.model.get_model(mode="mujoco_py") self.sim = MjSim(self.mjpy_model) self.initialize_time(self.control_freq) # create visualization screen or renderer if self.has_renderer and self.viewer is None: self.viewer = MujocoPyRenderer(self.sim) self.viewer.viewer.vopt.geomgroup[0] = ( 1 if self.render_collision_mesh else 0 ) self.viewer.viewer.vopt.geomgroup[1] = 1 if self.render_visual_mesh else 0 # hiding the overlay speeds up rendering significantly self.viewer.viewer._hide_overlay = True elif self.has_offscreen_renderer: if self.sim._render_context_offscreen is None: render_context = MjRenderContextOffscreen(self.sim) self.sim.add_render_context(render_context) self.sim._render_context_offscreen.vopt.geomgroup[0] = ( 1 if self.render_collision_mesh else 0 ) self.sim._render_context_offscreen.vopt.geomgroup[1] = ( 1 if self.render_visual_mesh else 0 ) # additional housekeeping self.sim_state_initial = self.sim.get_state() self._get_reference() self.cur_time = 0 self.timestep = 0 self.done = False
class Actor(Environment): def __init__(self, model_path, epsilon, epsilon_min, epsilon_decay, max_steps): self.epsilon = epsilon self.epsilon_min = epsilon_min self.epsilon_decay = epsilon_decay self.model3D = load_model_from_path(model_path) self.sim = MjSim(self.model3D) self.q_network = None self.max_steps = max_steps Environment.__init__(self, self.sim) def load_model(self, path): self.q_network = load_model(path) def get_possible_actions(self): return np.array([[-1], [1]]) def do_action(self, a): self.sim.data.ctrl[0:] = a def act(self, state): q_values = self.q_network.predict(state) if random.random() < self.epsilon: action = random.randint(0, len(q_values[0]) - 1) else: action = np.argmax(q_values) return action def observe(self, state): action = self.act(state) self.do_action(self.get_possible_actions()[action]) self.sim.step() s = np.array([ self.sim.get_state().qpos.tolist() + self.sim.get_state().qvel.tolist() ]) r = self.get_reward() return s, action, r, self.is_done()
def __init__(self, sparse_reward=False, horizon=700, fixed_reset=True): self.sparse_reward = sparse_reward model = load_model_from_path("envs/reacher.xml") sim = MjSim(model) self.sim = sim viewer = MjViewer(sim) self.init_state = sim.get_state() self.model = model self.viewer = viewer self.action_dim = len(self.sim.data.ctrl) #print(self.action_dim) self.obs_dim = len(self.get_obs()) self.fixed_reset = fixed_reset high = np.array([np.inf] * self.obs_dim) # self.action_space = spaces.Box(np.array([-1, -1, -1, -1]), np.array([1, 1, 1, 1]), dtype=np.float32) self.observation_space = spaces.Box(-high, high, dtype=np.float32) high = np.array([2.0] * self.action_dim) self.action_space = spaces.Box(-high, high, dtype=np.float32) self.metadata = None self.horizon = horizon self.cur_step = 0
def __init__(self, sparse_reward=False, horizon=200): self.goal_idx = 0 #np.random.randint(0, 4) self.goal_one_hot = np.array([0, 0, 0, 0]) self.goal_one_hot[self.goal_idx] = 1 self.sparse_reward = sparse_reward model = load_model_from_path("envs/ReacherDistractor.xml") sim = MjSim(model) self.sim = sim viewer = MjViewer(sim) self.init_state = sim.get_state() self.model = model self.viewer = viewer self.action_dim = len(self.sim.data.ctrl) self.obs_dim = len(self.get_obs()) high = np.array([np.inf] * self.obs_dim) # self.action_space = spaces.Box(np.array([-1, -1, -1, -1]), np.array([1, 1, 1, 1]), dtype=np.float32) self.observation_space = spaces.Box(-high, high, dtype=np.float32) high = np.array([2.0] * self.action_dim) self.action_space = spaces.Box(-high, high, dtype=np.float32) self.metadata = None self.horizon = horizon self.cur_step = 0
class MujocoEnv(metaclass=EnvMeta): """ Initializes a Mujoco Environment. Args: has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering. render_camera (str): Name of camera to render if `has_renderer` is True. Setting this value to 'None' will result in the default angle being applied, which is useful as it can be dragged / panned by the user using the mouse render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. render_gpu_device_id (int): corresponds to the GPU device id to use for offscreen rendering. Defaults to -1, in which case the device will be inferred from environment variables (GPUS or CUDA_VISIBLE_DEVICES). control_freq (float): how many control signals to receive in every simulated second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). hard_reset (bool): If True, re-loads model, sim, and render object upon a reset call, else, only calls sim.reset and resets all robosuite-internal variables renderer (str): string for the renderer to use renderer_config (dict): dictionary for the renderer configurations Raises: ValueError: [Invalid renderer selection] """ def __init__( self, has_renderer=False, has_offscreen_renderer=True, render_camera="frontview", render_collision_mesh=False, render_visual_mesh=True, render_gpu_device_id=-1, control_freq=20, horizon=1000, ignore_done=False, hard_reset=True, renderer="mujoco", renderer_config=None, ): # First, verify that both the on- and off-screen renderers are not being used simultaneously if has_renderer is True and has_offscreen_renderer is True: raise ValueError("the onscreen and offscreen renderers cannot be used simultaneously.") # Rendering-specific attributes self.has_renderer = has_renderer self.has_offscreen_renderer = has_offscreen_renderer self.render_camera = render_camera self.render_collision_mesh = render_collision_mesh self.render_visual_mesh = render_visual_mesh self.render_gpu_device_id = render_gpu_device_id self.viewer = None # Simulation-specific attributes self._observables = {} # Maps observable names to observable objects self._obs_cache = {} # Maps observable names to pre-/partially-computed observable values self.control_freq = control_freq self.horizon = horizon self.ignore_done = ignore_done self.hard_reset = hard_reset self._model_postprocessor = None # Function to post-process model after load_model() call self.model = None self.cur_time = None self.model_timestep = None self.control_timestep = None self.deterministic_reset = False # Whether to add randomized resetting of objects / robot joints self.renderer = renderer self.renderer_config = renderer_config # Load the model self._load_model() # Post-process model self._postprocess_model() # Initialize the simulation self._initialize_sim() #initializes the rendering self.initialize_renderer() # Run all further internal (re-)initialization required self._reset_internal() # Load observables if hasattr(self.viewer, '_setup_observables'): self._observables = self.viewer._setup_observables() else: self._observables = self._setup_observables() # check if viewer has get observations method and set a flag for future use. self.viewer_get_obs = hasattr(self.viewer, '_get_observations') def initialize_renderer(self): self.renderer = self.renderer.lower() if self.renderer_config is None and self.renderer != 'mujoco': self.renderer_config = load_renderer_config(self.renderer) if self.renderer == 'mujoco' or self.renderer == 'default': pass elif self.renderer == 'nvisii': from robosuite.renderers.nvisii.nvisii_renderer import NVISIIRenderer self.viewer = NVISIIRenderer(env=self, **self.renderer_config) elif self.renderer == 'igibson': from robosuite.renderers.igibson.igibson_renderer import iGibsonRenderer self.viewer = iGibsonRenderer(env=self, **self.renderer_config ) else: raise ValueError(f'{self.renderer} is not a valid renderer name. Valid options include default (native mujoco renderer), nvisii, and igibson') def initialize_time(self, control_freq): """ Initializes the time constants used for simulation. Args: control_freq (float): Hz rate to run control loop at within the simulation """ self.cur_time = 0 self.model_timestep = macros.SIMULATION_TIMESTEP if self.model_timestep <= 0: raise ValueError("Invalid simulation timestep defined!") self.control_freq = control_freq if control_freq <= 0: raise SimulationError("Control frequency {} is invalid".format(control_freq)) self.control_timestep = 1. / control_freq def set_model_postprocessor(self, postprocessor): """ Sets the post-processor function that self.model will be passed to after load_model() is called during resets. Args: postprocessor (None or function): If set, postprocessing method should take in a Task-based instance and return no arguments. """ self._model_postprocessor = postprocessor def _load_model(self): """Loads an xml model, puts it in self.model""" pass def _postprocess_model(self): """ Post-processes model after load_model() call. Useful for external objects (e.g.: wrappers) to be able to modify the sim model before it is actually loaded into the simulation """ if self._model_postprocessor is not None: self._model_postprocessor(self.model) def _setup_references(self): """ Sets up references to important components. A reference is typically an index or a list of indices that point to the corresponding elements in a flatten array, which is how MuJoCo stores physical simulation data. """ # Setup mappings from model to IDs self.model.generate_id_mappings(sim=self.sim) def _setup_observables(self): """ Sets up observables to be used for this environment. Returns: OrderedDict: Dictionary mapping observable names to its corresponding Observable object """ return OrderedDict() def _initialize_sim(self, xml_string=None): """ Creates a MjSim object and stores it in self.sim. If @xml_string is specified, the MjSim object will be created from the specified xml_string. Else, it will pull from self.model to instantiate the simulation Args: xml_string (str): If specified, creates MjSim object from this filepath """ # if we have an xml string, use that to create the sim. Otherwise, use the local model self.mjpy_model = load_model_from_xml(xml_string) if xml_string else self.model.get_model(mode="mujoco_py") # Create the simulation instance and run a single step to make sure changes have propagated through sim state self.sim = MjSim(self.mjpy_model) self.sim.forward() # Setup sim time based on control frequency self.initialize_time(self.control_freq) def reset(self): """ Resets simulation. Returns: OrderedDict: Environment observation space after reset occurs """ # TODO(yukez): investigate black screen of death # Use hard reset if requested if self.hard_reset and not self.deterministic_reset: if self.renderer == 'mujoco' or self.renderer == 'default': self._destroy_viewer() self._load_model() self._postprocess_model() self._initialize_sim() # Else, we only reset the sim internally else: self.sim.reset() # Reset necessary robosuite-centric variables self._reset_internal() self.sim.forward() # Setup observables, reloading if self._obs_cache = {} if self.hard_reset: # If we're using hard reset, must re-update sensor object references _observables = self._setup_observables() for obs_name, obs in _observables.items(): self.modify_observable(observable_name=obs_name, attribute="sensor", modifier=obs._sensor) # Make sure that all sites are toggled OFF by default self.visualize(vis_settings={vis: False for vis in self._visualizations}) if self.viewer is not None and self.renderer != 'mujoco': self.viewer.reset() observations = self.viewer._get_observations(force_update=True) if self.viewer_get_obs else self._get_observations(force_update=True) # Return new observations return observations def _reset_internal(self): """Resets simulation internal configurations.""" # create visualization screen or renderer if self.has_renderer and self.viewer is None: self.viewer = MujocoPyRenderer(self.sim) self.viewer.viewer.vopt.geomgroup[0] = (1 if self.render_collision_mesh else 0) self.viewer.viewer.vopt.geomgroup[1] = (1 if self.render_visual_mesh else 0) # hiding the overlay speeds up rendering significantly self.viewer.viewer._hide_overlay = True # make sure mujoco-py doesn't block rendering frames # (see https://github.com/StanfordVL/robosuite/issues/39) self.viewer.viewer._render_every_frame = True # Set the camera angle for viewing if self.render_camera is not None: self.viewer.set_camera(camera_id=self.sim.model.camera_name2id(self.render_camera)) elif self.has_offscreen_renderer: if self.sim._render_context_offscreen is None: render_context = MjRenderContextOffscreen(self.sim, device_id=self.render_gpu_device_id) self.sim.add_render_context(render_context) self.sim._render_context_offscreen.vopt.geomgroup[0] = (1 if self.render_collision_mesh else 0) self.sim._render_context_offscreen.vopt.geomgroup[1] = (1 if self.render_visual_mesh else 0) # additional housekeeping self.sim_state_initial = self.sim.get_state() self._setup_references() self.cur_time = 0 self.timestep = 0 self.done = False # Empty observation cache and reset all observables self._obs_cache = {} for observable in self._observables.values(): observable.reset() def _update_observables(self, force=False): """ Updates all observables in this environment Args: force (bool): If True, will force all the observables to update their internal values to the newest value. This is useful if, e.g., you want to grab observations when directly setting simulation states without actually stepping the simulation. """ for observable in self._observables.values(): observable.update(timestep=self.model_timestep, obs_cache=self._obs_cache, force=force) def _get_observations(self, force_update=False): """ Grabs observations from the environment. Args: force_update (bool): If True, will force all the observables to update their internal values to the newest value. This is useful if, e.g., you want to grab observations when directly setting simulation states without actually stepping the simulation. Returns: OrderedDict: OrderedDict containing observations [(name_string, np.array), ...] """ observations = OrderedDict() obs_by_modality = OrderedDict() # Force an update if requested if force_update: self._update_observables(force=True) # Loop through all observables and grab their current observation for obs_name, observable in self._observables.items(): if observable.is_enabled() and observable.is_active(): obs = observable.obs observations[obs_name] = obs modality = observable.modality + "-state" if modality not in obs_by_modality: obs_by_modality[modality] = [] # Make sure all observations are numpy arrays so we can concatenate them array_obs = [obs] if type(obs) in {int, float} or not obs.shape else obs obs_by_modality[modality].append(np.array(array_obs)) # Add in modality observations for modality, obs in obs_by_modality.items(): # To save memory, we only concatenate the image observations if explicitly requested if modality == "image-state" and not macros.CONCATENATE_IMAGES: continue observations[modality] = np.concatenate(obs, axis=-1) return observations def step(self, action): """ Takes a step in simulation with control command @action. Args: action (np.array): Action to execute within the environment Returns: 4-tuple: - (OrderedDict) observations from the environment - (float) reward from the environment - (bool) whether the current episode is completed or not - (dict) misc information Raises: ValueError: [Steps past episode termination] """ if self.done: raise ValueError("executing action in terminated episode") self.timestep += 1 # Since the env.step frequency is slower than the mjsim timestep frequency, the internal controller will output # multiple torque commands in between new high level action commands. Therefore, we need to denote via # 'policy_step' whether the current step we're taking is simply an internal update of the controller, # or an actual policy update policy_step = True # Loop through the simulation at the model timestep rate until we're ready to take the next policy step # (as defined by the control frequency specified at the environment level) for i in range(int(self.control_timestep / self.model_timestep)): self.sim.forward() self._pre_action(action, policy_step) self.sim.step() self._update_observables() policy_step = False # Note: this is done all at once to avoid floating point inaccuracies self.cur_time += self.control_timestep reward, done, info = self._post_action(action) if self.viewer is not None and self.renderer != 'mujoco': self.viewer.update() observations = self.viewer._get_observations() if self.viewer_get_obs else self._get_observations() return observations, reward, done, info def _pre_action(self, action, policy_step=False): """ Do any preprocessing before taking an action. Args: action (np.array): Action to execute within the environment policy_step (bool): Whether this current loop is an actual policy step or internal sim update step """ self.sim.data.ctrl[:] = action def _post_action(self, action): """ Do any housekeeping after taking an action. Args: action (np.array): Action to execute within the environment Returns: 3-tuple: - (float) reward from the environment - (bool) whether the current episode is completed or not - (dict) empty dict to be filled with information by subclassed method """ reward = self.reward(action) # done if number of elapsed timesteps is greater than horizon self.done = (self.timestep >= self.horizon) and not self.ignore_done return reward, self.done, {} def reward(self, action): """ Reward should be a function of state and action Args: action (np.array): Action to execute within the environment Returns: float: Reward from environment """ raise NotImplementedError def render(self): """ Renders to an on-screen window. """ self.viewer.render() def get_pixel_obs(self): """ Gets the pixel observations for the environment from the specified renderer """ self.viewer.get_pixel_obs() def close_renderer(self): """ Closes the renderer """ self.viewer.close() def observation_spec(self): """ Returns an observation as observation specification. An alternative design is to return an OrderedDict where the keys are the observation names and the values are the shapes of observations. We leave this alternative implementation commented out, as we find the current design is easier to use in practice. Returns: OrderedDict: Observations from the environment """ observation = self.viewer._get_observations() if self.viewer_get_obs else self._get_observations() return observation def clear_objects(self, object_names): """ Clears objects with the name @object_names out of the task space. This is useful for supporting task modes with single types of objects, as in @self.single_object_mode without changing the model definition. Args: object_names (str or list of str): Name of object(s) to remove from the task workspace """ object_names = {object_names} if type(object_names) is str else set(object_names) for obj in self.model.mujoco_objects: if obj.name in object_names: self.sim.data.set_joint_qpos(obj.joints[0], np.array((10, 10, 10, 1, 0, 0, 0))) def visualize(self, vis_settings): """ Do any needed visualization here Args: vis_settings (dict): Visualization keywords mapped to T/F, determining whether that specific component should be visualized. Should have "env" keyword as well as any other relevant options specified. """ # Set visuals for environment objects for obj in self.model.mujoco_objects: obj.set_sites_visibility(sim=self.sim, visible=vis_settings["env"]) def set_camera_pos_quat(self, camera_pos, camera_quat): if self.renderer in ["nvisii", "igibson"]: self.viewer.set_camera_pos_quat(camera_pos, camera_quat) else: raise AttributeError('setting camera position and quat requires renderer to be either NVISII or iGibson.') def reset_from_xml_string(self, xml_string): """ Reloads the environment from an XML description of the environment. Args: xml_string (str): Filepath to the xml file that will be loaded directly into the sim """ # if there is an active viewer window, destroy it if self.renderer != 'nvisii': self.close() # Since we are reloading from an xml_string, we are deterministically resetting self.deterministic_reset = True # initialize sim from xml self._initialize_sim(xml_string=xml_string) # Now reset as normal self.reset() # Turn off deterministic reset self.deterministic_reset = False def check_contact(self, geoms_1, geoms_2=None): """ Finds contact between two geom groups. Args: geoms_1 (str or list of str or MujocoModel): an individual geom name or list of geom names or a model. If a MujocoModel is specified, the geoms checked will be its contact_geoms geoms_2 (str or list of str or MujocoModel or None): another individual geom name or list of geom names. If a MujocoModel is specified, the geoms checked will be its contact_geoms. If None, will check any collision with @geoms_1 to any other geom in the environment Returns: bool: True if any geom in @geoms_1 is in contact with any geom in @geoms_2. """ # Check if either geoms_1 or geoms_2 is a string, convert to list if so if type(geoms_1) is str: geoms_1 = [geoms_1] elif isinstance(geoms_1, MujocoModel): geoms_1 = geoms_1.contact_geoms if type(geoms_2) is str: geoms_2 = [geoms_2] elif isinstance(geoms_2, MujocoModel): geoms_2 = geoms_2.contact_geoms for contact in self.sim.data.contact[: self.sim.data.ncon]: # check contact geom in geoms c1_in_g1 = self.sim.model.geom_id2name(contact.geom1) in geoms_1 c2_in_g2 = self.sim.model.geom_id2name(contact.geom2) in geoms_2 if geoms_2 is not None else True # check contact geom in geoms (flipped) c2_in_g1 = self.sim.model.geom_id2name(contact.geom2) in geoms_1 c1_in_g2 = self.sim.model.geom_id2name(contact.geom1) in geoms_2 if geoms_2 is not None else True if (c1_in_g1 and c2_in_g2) or (c1_in_g2 and c2_in_g1): return True return False def get_contacts(self, model): """ Checks for any contacts with @model (as defined by @model's contact_geoms) and returns the set of geom names currently in contact with that model (excluding the geoms that are part of the model itself). Args: model (MujocoModel): Model to check contacts for. Returns: set: Unique geoms that are actively in contact with this model. Raises: AssertionError: [Invalid input type] """ # Make sure model is MujocoModel type assert isinstance(model, MujocoModel), \ "Inputted model must be of type MujocoModel; got type {} instead!".format(type(model)) contact_set = set() for contact in self.sim.data.contact[: self.sim.data.ncon]: # check contact geom in geoms; add to contact set if match is found g1, g2 = self.sim.model.geom_id2name(contact.geom1), self.sim.model.geom_id2name(contact.geom2) if g1 in model.contact_geoms and g2 not in model.contact_geoms: contact_set.add(g2) elif g2 in model.contact_geoms and g1 not in model.contact_geoms: contact_set.add(g1) return contact_set def add_observable(self, observable): """ Adds an observable to this environment. Args: observable (Observable): Observable instance. """ assert observable.name not in self._observables,\ "Observable name {} is already associated with an existing observable! Use modify_observable(...) " \ "to modify a pre-existing observable.".format(observable.name) self._observables[observable.name] = observable def modify_observable(self, observable_name, attribute, modifier): """ Modifies observable with associated name @observable_name, replacing the given @attribute with @modifier. Args: observable_name (str): Observable to modify attribute (str): Observable attribute to modify. Options are {`'sensor'`, `'corrupter'`,`'filter'`, `'delayer'`, `'sampling_rate'`, `'enabled'`, `'active'`} modifier (any): New function / value to replace with for observable. If a function, new signature should match the function being replaced. """ # Find the observable assert observable_name in self._observables, "No valid observable with name {} found. Options are: {}".\ format(observable_name, self.observation_names) obs = self._observables[observable_name] # replace attribute accordingly if attribute == "sensor": obs.set_sensor(modifier) elif attribute == "corrupter": obs.set_corrupter(modifier) elif attribute == "filter": obs.set_filter(modifier) elif attribute == "delayer": obs.set_delayer(modifier) elif attribute == "sampling_rate": obs.set_sampling_rate(modifier) elif attribute == "enabled": obs.set_enabled(modifier) elif attribute == "active": obs.set_active(modifier) else: # Invalid attribute specified raise ValueError("Invalid observable attribute specified. Requested: {}, valid options are {}". format(attribute, {"sensor", "corrupter", "filter", "delayer", "sampling_rate", "enabled", "active"})) def _check_success(self): """ Checks if the task has been completed. Should be implemented by subclasses Returns: bool: True if the task has been completed """ raise NotImplementedError def _destroy_viewer(self): """ Destroys the current mujoco renderer instance if it exists """ # if there is an active viewer window, destroy it if self.viewer is not None: self.viewer.close() # change this to viewer.finish()? self.viewer = None def close(self): """Do any cleanup necessary here.""" self._destroy_viewer() @property def observation_modalities(self): """ Modalities for this environment's observations Returns: set: All observation modalities """ return set([observable.modality for observable in self._observables.values()]) @property def observation_names(self): """ Grabs all names for this environment's observables Returns: set: All observation names """ return set(self._observables.keys()) @property def enabled_observables(self): """ Grabs all names of enabled observables for this environment. An observable is considered enabled if its values are being continually computed / updated at each simulation timestep. Returns: set: All enabled observation names """ return set([name for name, observable in self._observables.items() if observable.is_enabled()]) @property def active_observables(self): """ Grabs all names of active observables for this environment. An observable is considered active if its value is being returned in the observation dict from _get_observations() call or from the step() call (assuming this observable is enabled). Returns: set: All active observation names """ return set([name for name, observable in self._observables.items() if observable.is_active()]) @property def _visualizations(self): """ Visualization keywords for this environment Returns: set: All components that can be individually visualized for this environment """ return {"env"} @property def action_spec(self): """ Action specification should be implemented in subclasses. Action space is represented by a tuple of (low, high), which are two numpy vectors that specify the min/max action limits per dimension. """ raise NotImplementedError @property def action_dim(self): """ Size of the action space Returns: int: Action space dimension """ raise NotImplementedError
def test_sim_state(): model = load_model_from_xml(BASIC_MODEL_XML) foo = 10 d = {"foo": foo, "foo_array": np.array([foo, foo, foo]), "foo_2darray": np.reshape(np.array([foo, foo, foo, foo]), (2, 2)), } def udd_callback(sim): return d sim = MjSim(model, nsubsteps=2, udd_callback=udd_callback) state = sim.get_state() assert np.array_equal(state.time, sim.data.time) assert np.array_equal(state.qpos, sim.data.qpos) assert np.array_equal(state.qvel, sim.data.qvel) assert np.array_equal(state.act, sim.data.act) for k in state.udd_state.keys(): if (isinstance(state.udd_state[k], Number)): assert state.udd_state[k] == sim.udd_state[k] else: assert np.array_equal(state.udd_state[k], sim.udd_state[k]) # test flatten, unflatten a = state.flatten() assert len(a) == (1 + sim.model.nq + sim.model.nv + sim.model.na + 8) state2 = MjSimState.from_flattened(a, sim) assert np.array_equal(state.time, sim.data.time) assert np.array_equal(state.qpos, sim.data.qpos) assert np.array_equal(state.qvel, sim.data.qvel) assert np.array_equal(state.act, sim.data.act) for k in state2.udd_state.keys(): if (isinstance(state2.udd_state[k], Number)): assert state2.udd_state[k] == sim.udd_state[k] else: assert np.array_equal(state2.udd_state[k], sim.udd_state[k]) assert state2 == state assert not state2 != state # test equality with deleting keys state2 = state2._replace(udd_state={"foo": foo}) assert state2 != state assert not (state2 == state) # test equality with changing contents of array state2 = state2._replace( udd_state={"foo": foo, "foo_array": np.array([foo, foo + 1])}) assert state2 != state assert not (state2 == state) # test equality with adding keys d2 = dict(d) d2.update({"not_foo": foo}) state2 = state2._replace(udd_state=d2) assert state2 != state assert not (state2 == state) # test defensive copy sim.set_state(state) state.qpos[0] = -1 assert not np.array_equal(state.qpos, sim.data.qpos) state3 = sim.get_state() state3.qpos[0] = -1 assert not np.array_equal(state3.qpos, sim.data.qpos) state3.udd_state["foo_array"][0] = -1 assert not np.array_equal( state3.udd_state["foo_array"], sim.udd_state["foo_array"]) # test no callback sim = MjSim(model, nsubsteps=2) state = sim.get_state() print("state.udd_state = %s" % state.udd_state) assert state.udd_state == {} # test flatten, unflatten a = state.flatten() assert len(a) == 1 + sim.model.nq + sim.model.nv + sim.model.na state2 = MjSimState.from_flattened(a, sim) assert np.array_equal(state.time, sim.data.time) assert np.array_equal(state.qpos, sim.data.qpos) assert np.array_equal(state.qvel, sim.data.qvel) assert np.array_equal(state.act, sim.data.act) assert state.udd_state == sim.udd_state
class MujocoEnv(gym.Env): """Superclass for all MuJoCo environments. """ def __init__(self, env_name, rand_seed, maximum_length, model_path, frame_skip, misc_info={}): self._env_name = env_name self._rand_seed = rand_seed self._maximum_length = maximum_length self._misc_info = misc_info if model_path.startswith("/"): fullpath = model_path else: fullpath = os.path.join(os.path.dirname(__file__), "assets", model_path) if not path.exists(fullpath): raise IOError("File %s does not exist" % fullpath) self.frame_skip = frame_skip self.model = load_model_from_path(fullpath) self.sim = MjSim(self.model) self.data = self.sim.data self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self.mujoco_render_frames = False self.init_qpos = self.data.qpos.ravel().copy() self.init_qvel = self.data.qvel.ravel().copy() # Why is this here? Causes errors #observation, _reward, done, _info = self._step(np.zeros(self.model.nu)) #assert not done #self.obs_dim = np.sum([o.size for o in observation]) if type(observation) is tuple else observation.size bounds = self.model.actuator_ctrlrange.copy() low = bounds[:, 0] high = bounds[:, 1] self.action_space = spaces.Box(low, high) # annoying should replace high = np.inf * np.ones(self.obs_dim) low = -high self.observation_space = spaces.Box(low, high) self._seed(self._rand_seed) def _seed(self, seed=None): self.np_random, seed = seeding.np_random(self._rand_seed) return [seed] # methods to override: # ---------------------------- def reset_model(self): """ Reset the robot degrees of freedom (qpos and qvel). Implement this in each subclass. """ raise NotImplementedError def mj_viewer_setup(self): """ Due to specifics of new mujoco rendering, the standard viewer cannot be used with this set-up. Instead we use this mujoco specific function. """ pass def get_env_state(self): """ Get full state of the environment beyond qpos and qvel For example, if targets are defined using sites, this function should also contain location of the sites (which are not included in qpos). Must return a dictionary that can be used in the set_env_state function """ raise NotImplementedError def set_env_state(self, state): """ Uses the state dictionary to set the state of the world """ raise NotImplementedError # ----------------------------- def reset(self): self.sim.reset() self.sim.forward() ob = self.reset_model() return ob, 0, False, {} def reset_soft(self, seed=None): return self._old_obs, 0, False, {} def set_state(self, qpos, qvel): assert qpos.shape == (self.model.nq, ) and qvel.shape == ( self.model.nv, ) state = self.sim.get_state() for i in range(self.model.nq): state.qpos[i] = qpos[i] for i in range(self.model.nv): state.qvel[i] = qvel[i] self.sim.set_state(state) self.sim.forward() @property def dt(self): return self.model.opt.timestep * self.frame_skip def do_simulation(self, ctrl, n_frames): for i in range(self.model.nu): self.sim.data.ctrl[i] = ctrl[i] for _ in range(n_frames): self.sim.step() if self.mujoco_render_frames is True: self.mj_render() def mj_render(self): try: self.viewer.render() except: self.mj_viewer_setup() self.viewer._run_speed = 0.5 #self.viewer._run_speed /= self.frame_skip self.viewer.render() def _get_viewer(self): return None def state_vector(self): state = self.sim.get_state() return np.concatenate([state.qpos.flat, state.qvel.flat]) # ----------------------------- def visualize_policy(self, policy, horizon=1000, num_episodes=1, mode='exploration'): self.mujoco_render_frames = True for ep in range(num_episodes): o = self.reset() d = False t = 0 while t < horizon and d is False: a = policy.get_action( o)[0] if mode == 'exploration' else policy.get_action( o)[1]['evaluation'] o, r, d, _ = self.step(a) t = t + 1 self.mujoco_render_frames = False def visualize_policy_offscreen(self, policy, horizon=1000, num_episodes=1, frame_size=(640, 480), mode='exploration', save_loc='./tmp/', filename='newvid', it=0, camera_name=None): for ep in range(num_episodes): print("Episode %d: rendering offline " % ep, end='', flush=True) o, *_ = self.reset() d = False t = 0 arrs = [] t0 = timer.time() while t < horizon and d is False: a = policy(o) o, r, d, _ = self.step(a) t = t + 1 curr_frame = self.sim.render(width=frame_size[0], height=frame_size[1], mode='offscreen', camera_name=camera_name, device_id=0) arrs.append(curr_frame[::-1, :, :]) print(t, end=', ', flush=True) file_name = save_loc + filename + str(ep) + str(it) + ".mp4" if not os.path.exists(save_loc): os.makedirs(save_loc) imageio.mimwrite(file_name, np.asarray(arrs), fps=10.0) print("saved", file_name) t1 = timer.time() print("time taken = %f" % (t1 - t0))
def main(data_dir): model = load_model_from_path("robot.xml") sim = MjSim(model) viewer = MjViewer(sim) initial_state = MjSimState(time=0, qpos=np.array([ 0, -np.pi / 4, 0, -3 * np.pi / 4 + 1, 0, np.pi / 2, np.pi / 4 ]), qvel=np.zeros(7), act=None, udd_state={}) sim.set_state(initial_state) sim.step() traj_count = 0 control_state = None while (traj_count < NUM_TRAJECTORIES and control_state != FINISHED): control_state = ACCELERATING outputFile = None initial_q = sim.get_state()[q_INDEX] velGen = randVelGen.RandVelGenerator() qd_des = velGen.generatePatternVel() coming_back_time = 0.0 time = 0 while control_state != FINISHED: state = sim.get_state() q = state[q_INDEX] qd = state[qd_INDEX] boundViolations = bounds.getBoundViolations(q) # RD = TB = bounds.tableBoundViolation(sim) OB = bounds.outOfBounds(q) DA = helperFun.moving(qd) DC = helperFun.stopped(qd) DD = DC DB = coming_back_time > RETURN_TIME FN = traj_count >= NUM_TRAJECTORIES prev_state = control_state # transition block if control_state == ACCELERATING: if not TB and not OB and not DA: control_state = ACCELERATING elif TB: control_state = COMING_BACK_IN_BOUNDS coming_back_time = 0.0 elif not TB and OB: control_state = DAMPING curBoundViolations = bounds.getBoundViolations(q) velGen.setJointDirections(curBoundViolations) elif not TB and not OB and DA: control_state = COASTING traj_count += 1 outputFile = open(data_dir + helperFun.getUniqueFileName("traj"), mode='x') outputWriter = csv.writer(outputFile, delimiter=',') print_count(traj_count) else: control_state = FINISHED print("Unknown transistion! ACCELERATING") elif control_state == COASTING: if not FN and not TB and not OB and DC: control_state = ACCELERATING qd_des = velGen.generatePatternVel() outputFile.close() elif not FN and TB: control_state = COMING_BACK_IN_BOUNDS coming_back_time = 0 outputFile.close() elif not FN and not TB and OB: control_state = DAMPING outputFile.close() curBoundViolations = bounds.getBoundViolations(q) velGen.setJointDirections(curBoundViolations) elif FN: control_state = FINISHED outputFile.close() elif not FN and not TB and not OB and not DC: control_state = COASTING else: control_state = FINISHED print("Unknown transition! COASTING") outputFile.close() elif control_state == DAMPING: if not TB and not DD: control_state = DAMPING elif TB: control_state = COMING_BACK_IN_BOUNDS coming_back_time = 0.0 elif not TB and DD: control_state = ACCELERATING qd_des = velGen.generatePatternVel() else: control_state = FINISHED print("Unknow transition! DAMPING") elif control_state == COMING_BACK_IN_BOUNDS: if not DB: control_state = COMING_BACK_IN_BOUNDS elif DB and OB: control_state = DAMPING curBoundViolations = bounds.getBoundViolations(q) velGen.setJointDirections(curBoundViolations) elif DB and not OB: control_state = ACCELERATING qd_des = velGen.generatePatternVel() else: control_state = FINISHED print("Unknown transition! COMING_BACK_IN_BOUNDS") elif control_state == FINISHED: control_state = FINISHED else: control_state = FINISHED print("Got to an invalid state!") # debug states if prev_state != control_state: if control_state == ACCELERATING: print("ACCELERATING") elif control_state == COASTING: print("COASTING") elif control_state == DAMPING: print("DAMPING") elif control_state == COMING_BACK_IN_BOUNDS: print("COMING_BACK_IN_BOUNDS") elif control_state == "FINISHED": print("FINISHED") else: print("In a bad state!") torques = np.zeros(7) if control_state == ACCELERATING: torques = controllers.basicVelControl(qd_des=qd_des, qd_cur=qd) elif control_state == COASTING: data = np.concatenate( (q, qd, data_calc.get_3D_data(sim), [time])) outputWriter.writerow(data) torques = controllers.basicVelControl(qd_des=qd_des, qd_cur=qd) elif control_state == DAMPING: torques = controllers.dampingControl(qd) elif control_state == COMING_BACK_IN_BOUNDS: coming_back_time += TIMESTEP torques = controllers.moveAwayFromTable(q=q, qd=qd) elif control_state == FINISHED: outputFile.close() break else: print("Got to an invalid state!") control_state = FINISHED break sim.data.ctrl[:] = torques sim.step() viewer.render() time += TIMESTEP
class MujocoEnv(metaclass=EnvMeta): """Initializes a Mujoco Environment.""" def __init__( self, has_renderer=False, has_offscreen_renderer=True, render_collision_mesh=False, render_visual_mesh=True, control_freq=10, horizon=1000, ignore_done=False, use_camera_obs=False, camera_name="frontview", camera_height=256, camera_width=256, camera_depth=False, ): """ Args: has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering. render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. control_freq (float): how many control signals to receive in every simulated second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). use_camera_obs (bool): if True, every observation includes a rendered image. camera_name (str): name of camera to be rendered. Must be set if @use_camera_obs is True. camera_height (int): height of camera frame. camera_width (int): width of camera frame. camera_depth (bool): True if rendering RGB-D, and RGB otherwise. """ self.has_renderer = has_renderer self.has_offscreen_renderer = has_offscreen_renderer self.render_collision_mesh = render_collision_mesh self.render_visual_mesh = render_visual_mesh self.control_freq = control_freq self.horizon = horizon self.ignore_done = ignore_done self.viewer = None self.model = None # settings for camera observations self.use_camera_obs = use_camera_obs if self.use_camera_obs and not self.has_offscreen_renderer: raise ValueError("Camera observations require an offscreen renderer.") self.camera_name = camera_name if self.use_camera_obs and self.camera_name is None: raise ValueError("Must specify camera name when using camera obs") self.camera_height = camera_height self.camera_width = camera_width self.camera_depth = camera_depth self._reset_internal() def initialize_time(self, control_freq): """ Initializes the time constants used for simulation. """ self.cur_time = 0 self.model_timestep = self.sim.model.opt.timestep if self.model_timestep <= 0: raise XMLError("xml model defined non-positive time step") self.control_freq = control_freq if control_freq <= 0: raise SimulationError( "control frequency {} is invalid".format(control_freq) ) self.control_timestep = 1. / control_freq def _load_model(self): """Loads an xml model, puts it in self.model""" pass def _get_reference(self): """ Sets up references to important components. A reference is typically an index or a list of indices that point to the corresponding elements in a flatten array, which is how MuJoCo stores physical simulation data. """ pass def reset(self): """Resets simulation.""" # TODO(yukez): investigate black screen of death # if there is an active viewer window, destroy it self._destroy_viewer() self._reset_internal() self.sim.forward() return self._get_observation() def _reset_internal(self): """Resets simulation internal configurations.""" # instantiate simulation from MJCF model self._load_model() self.mjpy_model = self.model.get_model(mode="mujoco_py") self.sim = MjSim(self.mjpy_model) self.initialize_time(self.control_freq) # create visualization screen or renderer if self.has_renderer and self.viewer is None: self.viewer = MujocoPyRenderer(self.sim) self.viewer.viewer.vopt.geomgroup[0] = ( 1 if self.render_collision_mesh else 0 ) self.viewer.viewer.vopt.geomgroup[1] = 1 if self.render_visual_mesh else 0 # hiding the overlay speeds up rendering significantly self.viewer.viewer._hide_overlay = True elif self.has_offscreen_renderer: if self.sim._render_context_offscreen is None: render_context = MjRenderContextOffscreen(self.sim) self.sim.add_render_context(render_context) self.sim._render_context_offscreen.vopt.geomgroup[0] = ( 1 if self.render_collision_mesh else 0 ) self.sim._render_context_offscreen.vopt.geomgroup[1] = ( 1 if self.render_visual_mesh else 0 ) # additional housekeeping self.sim_state_initial = self.sim.get_state() self._get_reference() self.cur_time = 0 self.timestep = 0 self.done = False def _get_observation(self): """Returns an OrderedDict containing observations [(name_string, np.array), ...].""" return OrderedDict() def step(self, action): """Takes a step in simulation with control command @action.""" if self.done: raise ValueError("executing action in terminated episode") self.timestep += 1 self._pre_action(action) end_time = self.cur_time + self.control_timestep while self.cur_time < end_time: self.sim.step() self.cur_time += self.model_timestep reward, done, info = self._post_action(action) return self._get_observation(), reward, done, info def _pre_action(self, action): """Do any preprocessing before taking an action.""" self.sim.data.ctrl[:] = action def _post_action(self, action): """Do any housekeeping after taking an action.""" reward = self.reward(action) # done if number of elapsed timesteps is greater than horizon self.done = (self.timestep >= self.horizon) and not self.ignore_done return reward, self.done, {} def reward(self, action): """Reward should be a function of state and action.""" return 0 def render(self): """ Renders to an on-screen window. """ self.viewer.render() def observation_spec(self): """ Returns an observation as observation specification. An alternative design is to return an OrderedDict where the keys are the observation names and the values are the shapes of observations. We leave this alternative implementation commented out, as we find the current design is easier to use in practice. """ observation = self._get_observation() return observation # observation_spec = OrderedDict() # for k, v in observation.items(): # observation_spec[k] = v.shape # return observation_spec def action_spec(self): """ Action specification should be implemented in subclasses. Action space is represented by a tuple of (low, high), which are two numpy vectors that specify the min/max action limits per dimension. """ raise NotImplementedError def reset_from_xml_string(self, xml_string): """Reloads the environment from an XML description of the environment.""" # if there is an active viewer window, destroy it self.close() # load model from xml self.mjpy_model = load_model_from_xml(xml_string) self.sim = MjSim(self.mjpy_model) self.initialize_time(self.control_freq) if self.has_renderer and self.viewer is None: self.viewer = MujocoPyRenderer(self.sim) self.viewer.viewer.vopt.geomgroup[0] = ( 1 if self.render_collision_mesh else 0 ) self.viewer.viewer.vopt.geomgroup[1] = 1 if self.render_visual_mesh else 0 # hiding the overlay speeds up rendering significantly self.viewer.viewer._hide_overlay = True elif self.has_offscreen_renderer: render_context = MjRenderContextOffscreen(self.sim) render_context.vopt.geomgroup[0] = 1 if self.render_collision_mesh else 0 render_context.vopt.geomgroup[1] = 1 if self.render_visual_mesh else 0 self.sim.add_render_context(render_context) self.sim_state_initial = self.sim.get_state() self._get_reference() self.cur_time = 0 self.timestep = 0 self.done = False # necessary to refresh MjData self.sim.forward() def find_contacts(self, geoms_1, geoms_2): """ Finds contact between two geom groups. Args: geoms_1: a list of geom names (string) geoms_2: another list of geom names (string) Returns: iterator of all contacts between @geoms_1 and @geoms_2 """ for contact in self.sim.data.contact[0 : self.sim.data.ncon]: # check contact geom in geoms c1_in_g1 = self.sim.model.geom_id2name(contact.geom1) in geoms_1 c2_in_g2 = self.sim.model.geom_id2name(contact.geom2) in geoms_2 # check contact geom in geoms (flipped) c2_in_g1 = self.sim.model.geom_id2name(contact.geom2) in geoms_1 c1_in_g2 = self.sim.model.geom_id2name(contact.geom1) in geoms_2 if (c1_in_g1 and c2_in_g2) or (c1_in_g2 and c2_in_g1): yield contact def _check_contact(self): """Returns True if gripper is in contact with an object.""" return False def _check_success(self): """ Returns True if task has been completed. """ return False def _destroy_viewer(self): # if there is an active viewer window, destroy it if self.viewer is not None: self.viewer.close() # change this to viewer.finish()? self.viewer = None def close(self): """Do any cleanup necessary here.""" self._destroy_viewer()
class MujocoEnv(gym.Env): def __init__(self, model_path, frame_skip=1, action_noise=0.0, random_init_state=True): if model_path.startswith("/"): fullpath = model_path else: fullpath = os.path.join(os.path.dirname(__file__), "assets", model_path) if not path.exists(fullpath): raise IOError("File %s does not exist" % fullpath) self.frame_skip = frame_skip self.model = load_model_from_path(fullpath) self.sim = MjSim(self.model) self.data = self.sim.data self.viewer = None self.init_qpos = self.data.qpos.ravel().copy() self.init_qvel = self.data.qvel.ravel().copy() self.init_qacc = self.data.qacc.ravel().copy() self.init_ctrl = self.data.ctrl.ravel().copy() self.qpos_dim = self.init_qpos.size self.qvel_dim = self.init_qvel.size self.ctrl_dim = self.init_ctrl.size self.action_noise = action_noise self.random_init_state = random_init_state """ if "init_qpos" in self.model.numeric_names: init_qpos_id = self.model.numeric_names.index("init_qpos") addr = self.model.numeric_adr.flat[init_qpos_id] size = self.model.numeric_size.flat[init_qpos_id] init_qpos = self.model.numeric_data.flat[addr:addr + size] self.init_qpos = init_qpos """ self.dcom = None self.current_com = None self.reset() super(MujocoEnv, self).__init__() @property def action_space(self): bounds = self.model.actuator_ctrlrange.copy() lb = bounds[:, 0] ub = bounds[:, 1] return spaces.Box(lb, ub) @property def observation_space(self): shp = self.get_current_obs().shape ub = BIG * np.ones(shp) return spaces.Box(ub * -1, ub) @property def action_bounds(self): return self.action_space.low, self.action_space.high def reset_mujoco(self, init_state=None): if init_state is None: if self.random_init_state: qp = self.init_qpos.copy() + \ np.random.normal(size=self.init_qpos.shape) * 0.01 qv = self.init_qvel.copy() + \ np.random.normal(size=self.init_qvel.shape) * 0.1 else: qp = self.init_qpos.copy() qv = self.init_qvel.copy() qacc = self.init_qacc.copy() ctrl = self.init_ctrl.copy() else: pass """ start = 0 for datum_name in ["qpos", "qvel", "qacc", "ctrl"]: datum = getattr(self.data, datum_name) datum_dim = datum.shape[0] datum = init_state[start: start + datum_dim] setattr(self.model.data, datum_name, datum) start += datum_dim """ self.set_state(qp, qv) def reset(self, init_state=None): # self.reset_mujoco(init_state) self.sim.reset() self.sim.forward() self.current_com = self.data.subtree_com[0] self.dcom = np.zeros_like(self.current_com) return self.get_current_obs() def set_state(self, qpos, qvel, qacc): assert qpos.shape == (self.qpos_dim, ) and qvel.shape == ( self.qvel_dim, ) and qacc.shape == (self.qacc_dim, ) state = self.sim.get_state() for i in range(self.model.nq): state.qpos[i] = qpos[i] for i in range(self.model.nv): state.qvel[i] = qvel[i] self.sim.set_state(state) self.sim.forward() def get_current_obs(self): return self._get_full_obs() def _get_full_obs(self): data = self.data cdists = np.copy(self.model.geom_margin).flat for c in self.model.data.contact: cdists[c.geom2] = min(cdists[c.geom2], c.dist) obs = np.concatenate([ data.qpos.flat, data.qvel.flat, # data.cdof.flat, data.cinert.flat, data.cvel.flat, # data.cacc.flat, data.qfrc_actuator.flat, data.cfrc_ext.flat, data.qfrc_constraint.flat, cdists, # data.qfrc_bias.flat, # data.qfrc_passive.flat, self.dcom.flat, ]) return obs @property def _state(self): return np.concatenate([self.data.qpos.flat, self.data.qvel.flat]) @property def _full_state(self): return np.concatenate([ self.data.qpos, self.data.qvel, self.data.qacc, self.data.ctrl, ]).ravel() def inject_action_noise(self, action): # generate action noise noise = self.action_noise * \ np.random.normal(size=action.shape) # rescale the noise to make it proportional to the action bounds lb, ub = self.action_bounds noise = 0.5 * (ub - lb) * noise return action + noise def forward_dynamics(self, action): ctrl = self.inject_action_noise(action) for i in range(self.model.nu): self.sim.data.ctrl[i] = ctrl[i] for _ in range(self.frame_skip): self.sim.step() new_com = self.data.subtree_com[0] self.dcom = new_com - self.current_com self.current_com = new_com def get_viewer(self, config=None): if self.viewer is None: self.viewer = MjViewer(self.sim) # self.viewer.start() # self.viewer.set_model(self.model) if config is not None: pass # self.viewer.set_window_pose(config["xpos"], config["ypos"]) # self.viewer.set_window_size(config["width"], config["height"]) # self.viewer.set_window_title(config["title"]) return self.viewer def render(self, close=False, mode='human', config=None): if mode == 'human': # viewer = self.get_viewer(config=config) try: self.viewer.render() except: self.get_viewer(config=config) self.viewer.render() elif mode == 'rgb_array': viewer = self.get_viewer(config=config) viewer.loop_once() # self.get_viewer(config=config).render() data, width, height = self.get_viewer(config=config).get_image() return np.fromstring(data, dtype='uint8').reshape(height, width, 3)[::-1, :, :] if close: self.stop_viewer() # def start_viewer(self): # viewer = self.get_viewer() # if not viewer.running: # viewer.start() # # def stop_viewer(self): # if self.viewer: # self.viewer.finish() # self.viewer = None # def release(self): # # temporarily alleviate the issue (but still some leak) # from learning_to_adapt.mujoco_py.mjlib import mjlib # mjlib.mj_deleteModel(self.model._wrapped) # mjlib.mj_deleteData(self.data._wrapped) def get_body_xmat(self, body_name): idx = self.model.body_names.index(body_name) return self.data.ximat[idx].reshape((3, 3)) def get_body_com(self, body_name): return self.data.get_body_xpos(body_name) def get_body_comvel(self, body_name): idx = self.model.body_names.index(body_name) ## _compute_subtree body_vels = np.zeros((self.model.nbody, 6)) # bodywise quantities mass = self.model.body_mass.flatten() for i in range(self.model.nbody): # body velocity # Compute object 6D velocity in object-centered frame, world/local orientation. # mj_objectVelocity(const mjModel* m, const mjData* d, int objtype, int objid, mjtMum* res, int flg_local) mujoco_py.cymj._mj_objectVelocity(self.model, self.data, 1, i, body_vels[i], 0) lin_moms = body_vels[:, 3:] * mass.reshape((-1, 1)) # init subtree mass body_parentid = self.model.body_parentid # subtree com and com_vel for i in range(self.model.nbody - 1, -1, -1): if i > 0: parent = body_parentid[i] # add scaled velocities lin_moms[parent] += lin_moms[i] # accumulate mass mass[parent] += mass[i] return_ = lin_moms / mass.reshape((-1, 1)) return return_[idx] # return self.model.body_comvels[idx] # def get_body_comvel(self, body_name): # idx = self.model.body_names.index(body_name) # # return self.model.body_comvels[idx] # def print_stats(self): # super(MujocoEnv, self).print_stats() # print("qpos dim:\t%d" % len(self.data.qpos)) def action_from_key(self, key): raise NotImplementedError # def set_state_tmp(self, state, restore=True): # if restore: # prev_pos = self.data.qpos # prev_qvel = self.data.qvel # prev_ctrl = self.data.ctrl # prev_act = self.data.act # qpos, qvel = self.decode_state(state) # self.model.data.qpos = qpos # self.model.data.qvel = qvel # self.model.forward() # yield # if restore: # self.data.qpos = prev_pos # self.data.qvel = prev_qvel # self.data.ctrl = prev_ctrl # self.data.act = prev_act # self.model.forward() def get_param_values(self): return {} def set_param_values(self, values): pass
class BaseMujocoHexRobot(HexRobot): """The hexapod robot in mujoco. Child classes need to define the joint names.""" @classmethod @abc.abstractproperty def joint_names(cls) -> Tuple[str, ...]: """The names of the joints in the mujoco xml.""" raise NotImplementedError def __init__(self, load_path: str, viewer: bool = True): """Initialize a hex robot in mujoco. Parameters --------- load_path : str Path to the xml file. viewer : bool Flag to create a MjViewer for the robot. By default a viewer will be created. """ model = load_model_from_path(load_path) self._sim = MjSim(model) self.num_joints = len(self.joint_names) self._joint_qpos_ids = [ self._sim.model.get_joint_qpos_addr(x) for x in self.joint_names ] self._joint_qvel_ids = [ self._sim.model.get_joint_qvel_addr(x) for x in self.joint_names ] self._joint_actuator_id_map = dict( zip(self.joint_names, range(self.num_joints))) if viewer: self._viewer = MjViewer(self._sim) else: self._viewer = None def get_state(self) -> HexState: """Retrieve the current state of the robot. Returns ------- HexState The current state of the robot. """ sim_state = self._sim.get_state() joint_pos = sim_state.qpos[self._joint_qpos_ids] joint_vel = sim_state.qvel[self._joint_qvel_ids] return HexState( qpos=OrderedDict(zip(self.joint_names, joint_pos)), qvel=OrderedDict(zip(self.joint_names, joint_vel)), acceleration=np.zeros(3), ) # TODO get the acceleration. def set_joint_positions(self, joints: Dict[str, float]) -> None: """Sets the joint positions to the specified values Parameters ---------- joints : Dict[str, float] A mapping between the joint name and its value to be set. """ sim_state = self._sim.get_state() for name, value in joints.items(): joint_id = self._sim.model.get_joint_qpos_addr(name) sim_state.qpos[joint_id] = value self._sim.set_state(sim_state) self._sim.forward() def step(self) -> None: """Steps the simulation forward by one step. Updates the visualizer if one is available. """ self._sim.step() if self._viewer is not None: self._viewer.render() def set_command(self, command: Dict[str, float]) -> None: """Set the command of the robot. Parameters ---------- command : Dict[str, float] The commands to the robot. """ for name, value in command.items(): self._sim.data.ctrl[self._joint_actuator_id_map[name]] = value
class DeterministicGraspPolicy(Policy): def __init__(self, agentparams, policyparams): Policy.__init__(self) self.agentparams = agentparams self.min_lift = agentparams.get('min_z_lift', 0.05) self.policyparams = policyparams self.adim = agentparams['adim'] self.n_actions = policyparams['nactions'] if 'num_samples' in self.policyparams: self.M = self.policyparams['num_samples'] else: self.M = 20 # number of CEM Samples if 'best_to_take' in self.policyparams: self.K = self.policyparams['best_to_take'] else: self.K = 5 # best samples to average for next sampling assert self.adim >= 4, 'must have at least x, y, z + gripper actions' self.moveto = True self.drop = False self.grasp = False self.lift = False if 'iterations' in self.policyparams: self.niter = self.policyparams['iterations'] else: self.niter = 10 # number of iterations self.imgs = [] self.iter = 0 def setup_CEM_model(self, t, init_model): if t == 0: if 'gen_xml' in self.agentparams: self.CEM_model = MjSim( load_model_from_path(self.agentparams['gen_xml_fname'])) else: self.CEM_model = MjSim( load_model_from_path(self.agentparams['filename'])) self.initial_qpos = init_model.data.qpos.copy() self.initial_qvel = init_model.data.qvel.copy() self.reset_CEM_model() def reset_CEM_model(self): if len(self.imgs) > 0: print('saving iter', self.iter, 'with frames:', len(self.imgs)) npy_to_gif( self.imgs, os.path.join(self.agentparams['record'], 'iter_{}'.format(self.iter))) self.iter += 1 sim_state = self.CEM_model.get_state() sim_state.qpos[:] = self.initial_qpos.copy() sim_state.qvel[:] = self.initial_qvel.copy() self.CEM_model.set_state(sim_state) self.prev_target = self.CEM_model.data.qpos[:self.adim].squeeze().copy( ) self.target = self.CEM_model.data.qpos[:self.adim].squeeze().copy() for _ in range(5): self.step_model(self.target) self.imgs = [] def viewer_refresh(self): if 'debug_viewer' in self.policyparams and self.policyparams[ 'debug_viewer']: large_img = self.CEM_model.render( 640, 480, camera_name="maincam")[::-1, :, :] self.imgs.append(large_img) def perform_CEM(self, targetxy): self.reset_CEM_model() if 'object_meshes' in self.agentparams: targetxy = self.CEM_model.data.sensordata[:2].squeeze().copy() print('Beginning CEM') ang_dis_mean = self.policyparams['init_mean'].copy() ang_dis_cov = self.policyparams['init_cov'].copy() scores = np.zeros(self.M) best_score, best_ang, best_xy = -1, None, None for n in range(self.niter): ang_disp_samps = np.random.multivariate_normal(ang_dis_mean, ang_dis_cov, size=self.M) for s in range(self.M): #print('On iter', n, 'sample', s) self.reset_CEM_model() move = True drop = False grasp = False g_start = 0 lift = False angle_delta = ang_disp_samps[s, 0] targetxy_delta = targetxy + ang_disp_samps[s, 1:] print('init iter') print(targetxy) print(angle_delta, targetxy_delta) for t in range(self.n_actions): angle_action = np.zeros(self.adim) cur_xy = self.CEM_model.data.qpos[:2].squeeze() if move and np.linalg.norm( targetxy_delta - cur_xy, 2) <= self.policyparams['drop_thresh']: move = False drop = True if drop and self.CEM_model.data.qpos[2] <= -0.079: drop = False grasp = True g_start = t if grasp and t - g_start > 2: grasp = False lift = True if move: angle_action[:2] = targetxy_delta angle_action[2] = self.agentparams['ztarget'] angle_action[3] = angle_delta angle_action[4] = -100 elif drop: angle_action[:2] = targetxy_delta angle_action[2] = -0.08 angle_action[3] = angle_delta angle_action[4] = -100 elif grasp: angle_action[:2] = targetxy_delta angle_action[2] = -0.08 angle_action[3] = angle_delta angle_action[4] = 21 elif lift: angle_action[:2] = targetxy_delta angle_action[2] = self.agentparams['ztarget'] angle_action[3] = angle_delta angle_action[4] = 21 self.step_model(angle_action) # print 'final z', self.CEM_model.data.qpos[8].squeeze(), 'with angle', angle_samps[s] if 'object_meshes' in self.agentparams: obj_z = self.CEM_model.data.sensordata[2].squeeze() else: obj_z = self.CEM_model.data.qpos[8].squeeze() print('obj_z at iter', n * self.M + s, 'is', obj_z) scores[s] = obj_z if 'stop_iter_thresh' in self.policyparams and scores[ s] > self.policyparams['stop_iter_thresh']: return ang_disp_samps[s, 0], ang_disp_samps[s, 1:] # print 'score',scores[s] best_scores = np.argsort(-scores)[:self.K] if scores[best_scores[0]] > best_score or best_ang is None: #print('best', scores[best_scores[0]]) best_score = scores[best_scores[0]] best_ang = ang_disp_samps[best_scores[0], 0] best_xy = ang_disp_samps[best_scores[0], 1:] ang_dis_mean = np.mean(ang_disp_samps[best_scores, :], axis=0) ang_dis_cov = np.cov(ang_disp_samps[best_scores, :].T) return best_ang, best_xy def step_model(self, input_actions): pos_clip = self.agentparams['targetpos_clip'] self.prev_target = self.target.copy() self.target = input_actions.copy() self.target = np.clip(self.target, pos_clip[0], pos_clip[1]) for s in range(self.agentparams['substeps']): step_action = s / float(self.agentparams['substeps']) * ( self.target - self.prev_target) + self.prev_target self.CEM_model.data.ctrl[:] = step_action self.CEM_model.step() self.viewer_refresh() #print "end", self.CEM_model.data.qpos[:4].squeeze() def act(self, traj, t, init_model=None, goal_object_pose=None, hyperparams=None, goal_image=None): """ Scripted pick->place->wiggle trajectory. There's probably a better way to script this but booleans will suffice for now. """ self.setup_CEM_model(t, init_model) if t == 0: self.moveto = True self.drop = False self.lift = False self.grasp = False self.second_moveto = False self.final_drop = False self.wiggle = False self.switchTime = 0 print('start pose', traj.Object_pose[t, 0, :3]) self.targetxy = traj.Object_pose[t, 0, :2] self.angle, self.disp = self.perform_CEM(self.targetxy) print('best angle', self.angle, 'best target', self.targetxy) self.targetxy += self.disp traj.desig_pos = np.zeros((2, 2)) traj.desig_pos[0] = self.targetxy.copy() if self.lift and traj.X_full[t, 2] >= self.min_lift: self.lift = False if traj.Object_full_pose[t, 0, 2] > -0.01: #lift occursed self.second_moveto = True self.targetxy = np.random.uniform(-0.2, 0.2, size=2) print("LIFTED OBJECT!") print('dropping at', self.targetxy) traj.desig_pos[1] = self.targetxy.copy() else: self.wiggle = True if self.grasp and self.switchTime > 0: print('lifting at time', t, '!', 'have z', traj.X_full[t, 2]) self.grasp = False self.lift = True if self.drop and (traj.X_full[t, 2] <= -0.079 or self.switchTime >= 2): print('grasping at time', t, '!', 'have z', traj.X_full[t, 2]) self.drop = False self.grasp = True self.switchTime = 0 if self.moveto and (np.linalg.norm(traj.X_full[t, :2] - self.targetxy, 2) <= self.policyparams['drop_thresh']): if self.switchTime > 0: print('stopping moveto at time', t, '!') print(traj.X_full[t, :2], self.targetxy) self.moveto = False self.drop = True self.switchTime = 0 else: self.switchTime += 1 if self.second_moveto and np.linalg.norm( traj.X_full[t, :2] - self.targetxy, 2) <= self.policyparams['drop_thresh']: self.second_moveto = False self.final_drop = True self.switchTime = 0 actions = np.zeros(self.adim) if self.moveto or self.second_moveto: delta = np.zeros(3) delta[:2] = self.targetxy - traj.target_qpos[t, :2] if 'xyz_std' in self.policyparams: delta += self.policyparams['xyz_std'] * np.random.normal( size=3) norm = np.sqrt(np.sum(np.square(delta))) if norm > self.policyparams['max_norm']: delta *= self.policyparams['max_norm'] / norm actions[:3] = traj.target_qpos[t, :3] + delta actions[2] = self.agentparams['ztarget'] actions[3] = self.angle if self.moveto: actions[-1] = -1 else: actions[-1] = 1 self.switchTime += 1 elif self.drop: actions[:2] = self.targetxy actions[2] = -0.08 actions[3] = self.angle actions[-1] = -1 self.switchTime += 1 elif self.lift: actions[:2] = self.targetxy actions[2] = self.agentparams['ztarget'] actions[3] = self.angle actions[-1] = 1 elif self.grasp: actions[:2] = self.targetxy actions[2] = -0.08 actions[3] = self.angle actions[-1] = 1 self.switchTime += 1 elif self.final_drop: if self.switchTime > 0: print('opening') actions[:2] = self.targetxy actions[2] = -0.08 actions[3] = self.angle actions[-1] = -1 self.switchTime += 1 if self.switchTime > 1: print('up') actions[:2] = self.targetxy actions[2] = self.agentparams['ztarget'] + np.random.uniform( -0.03, 0.05) actions[3] = self.angle + np.random.uniform( -np.pi / 4., np.pi / 4.) actions[-1] = -1 self.final_drop = False self.wiggle = True self.switchTime = 0 else: actions[:2] = self.targetxy actions[2] = -0.08 actions[3] = self.angle actions[-1] = -1 self.switchTime += 1 elif self.wiggle: delta_vec = np.random.normal(size=2) norm = np.sqrt(np.sum(np.square(delta_vec))) if norm > self.policyparams['max_norm']: delta_vec *= self.policyparams['max_norm'] / norm actions[:2] = np.clip(traj.target_qpos[t, :2] + delta_vec, -0.15, 0.15) delta_z = np.random.uniform(-0.08 - traj.target_qpos[t, 2], 0.3 - traj.target_qpos[t, 2]) actions[2] = traj.target_qpos[t, 2] + delta_z actions[3] = traj.target_qpos[t, 3] + np.random.uniform(-0.1, 0.1) if np.random.uniform() > 0.5: actions[4] = -1 else: actions[4] = 1 if 'angle_std' in self.policyparams: actions[3] += self.policyparams['angle_std'] * np.random.normal() return actions - traj.target_qpos[t, :] * traj.mask_rel
class MujocoEnv(gym.Env): """Superclass for all MuJoCo environments. """ def __init__(self, model_path, frame_skip=1, xml_string=""): """ @param model_path path of the default model @param xml_string if given, the model will be reset using these values """ fullpath = os.path.join(os.path.dirname(__file__), "assets", model_path) if not path.exists(fullpath): raise IOError("File %s does not exist" % fullpath) self.model = load_model_from_path(fullpath) with open(fullpath, 'r') as f: self.model_xml = f.read() self.default_xml = self.model_xml if xml_string != "": self.model = load_model_from_xml(xml_string) self.model_xml = xml_string self.frame_skip = frame_skip self.sim = MjSim(self.model) self.data = self.sim.data self.viewer = None self._viewers = {} self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self.mujoco_render_frames = False self.init_qpos = self.data.qpos.ravel().copy() self.init_qvel = self.data.qvel.ravel().copy() observation, _reward, done, _info = self.step(np.zeros(self.model.nu)) assert not done self.obs_dim = np.sum([ o.size for o in observation ]) if type(observation) is tuple else observation.size high = np.inf * np.ones(self.obs_dim) low = -high self.observation_space = spaces.Box(low, high) self._seed() self.set_param_space() def get_params(self): """ Returns a dict of (param_name, param_value) """ return MujocoUpdater(self.model_xml).get_params() def set_params(self, params): """ @param params: dict(param_name, param_value) param_name should be a string of bodyname__type__paramname where type is either geom or joint, e.g. thigh__joint__friction, and param_value is a numpy array """ # invalidate cached properties self.__dict__.pop('action_space', None) self.__dict__.pop('observation_space', None) new_xml = MujocoUpdater.set_params(self.model_xml, params) self.__init__(xml_string=new_xml) self.reset() return self def set_param_space(self, param_space=None, eps_scale=0.5, replace=True): """ Set param_space @param param_space: dict(string, gym.space.base.Space) @param eps_scale: scale of variation applied to all params @param replace: if true, param_space overwrites default param_space. Default behavior is to merge. """ if param_space is not None: if replace: self._param_space = param_space else: self._param_space = {**self._param_space, **param_space} else: params = MujocoUpdater(self.model_xml).get_params() self._param_space = dict() for param, value in params.items(): eps = np.abs(value) * eps_scale ub = value + eps lb = value - eps for name in positive_params: if name in param: lb = np.clip(lb, 1e-3, ub) break space = spaces.Box(lb, ub) self._param_space[param] = space def get_geom_params(self, body_name): geom = MujocoUpdater(self.model_xml).get_geom(body_name) return { k: v for k, v in geom.attrib.items() if k not in MujocoUpdater.ignore_params } def get_joint_params(self, body_name): joint = MujocoUpdater(self.model_xml).get_joint(body_name) return { k: v for k, v in joint.attrib.items() if k not in MujocoUpdater.ignore_params } def get_body_names(self): return MujocoUpdater(self.model_xml).get_body_names() def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_current_obs(self): return self._get_full_obs() def _get_full_obs(self): data = self.sim.data cdists = np.copy(self.model.geom_margin).flat for c in self.sim.data.contact: cdists[c.geom2] = min(cdists[c.geom2], c.dist) obs = np.concatenate([ data.qpos.flat, data.qvel.flat, # data.cdof.flat, data.cinert.flat, data.cvel.flat, # data.cacc.flat, data.qfrc_actuator.flat, data.cfrc_ext.flat, data.qfrc_constraint.flat, cdists, # data.qfrc_bias.flat, # data.qfrc_passive.flat, self.dcom.flat, ]) return obs @property def _state(self): return np.concatenate( [self.sim.data.qpos.flat, self.sim.data.qvel.flat]) @property def _full_state(self): return np.concatenate([ self.sim.data.qpos, self.sim.data.qvel, self.sim.data.qacc, self.sim.data.ctrl, ]).ravel() # methods to override: # ---------------------------- def reset_model(self): """ Reset the robot degrees of freedom (qpos and qvel). Implement this in each subclass. """ raise NotImplementedError def mj_viewer_setup(self): """ Due to specifics of new mujoco rendering, the standard viewer cannot be used with this set-up. Instead we use this mujoco specific function. """ pass def viewer_setup(self): """ Does not work. Use mj_viewer_setup() instead """ pass # ----------------------------- def reset(self, randomize=True): self.sim.reset() self.sim.forward() ob = self.reset_model() return ob # Added for bayesian_rl def get_sim_state(self): return self.sim.get_state() # Added for bayesian_rl def set_sim_state(self, state): self.sim.set_state(state) # Added for bayesian_rl def set_state_vector(self, state_vector): qpos = state_vector[:self.model.nq] qvel = state_vector[self.model.nq:] self.set_state(qpos, qvel) # Added for bayesian_rl def get_state_vector(self): return self.state_vector() def set_state(self, qpos, qvel): assert qpos.shape == (self.model.nq, ) and qvel.shape == ( self.model.nv, ) state = self.sim.get_state() for i in range(self.model.nq): state.qpos[i] = qpos[i] for i in range(self.model.nv): state.qvel[i] = qvel[i] self.sim.set_state(state) self.sim.forward() @property def dt(self): return self.model.opt.timestep * self.frame_skip def do_simulation(self, ctrl, n_frames): for i in range(self.model.nu): self.sim.data.ctrl[i] = ctrl[i] for _ in range(n_frames): self.sim.step() if self.mujoco_render_frames is True: self.mj_render() def mj_render(self): try: self.viewer.render() except: self.mj_viewer_setup() self.viewer._run_speed = 1.0 #self.viewer._run_speed /= self.frame_skip self.viewer.render() def _get_viewer(self, mode): self.viewer = self._viewers.get(mode) if self.viewer is None: if mode == 'human': self.viewer = mujoco_py.MjViewer(self.sim) elif mode == 'rgb_array' or mode == 'depth_array': self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, -1) self.viewer_setup() self._viewers[mode] = self.viewer return self.viewer def close(self): if self.viewer is not None: # self.viewer.finish() self.viewer = None self._viewers = {} # def step(self, a): # return self._step(a) # Added for bayesian_rl def take_action(self, a): self.step(a) return self.get_sim_state() def state_vector(self): state = self.sim.get_state() return np.concatenate([state.qpos.flat, state.qvel.flat]) # ----------------------------- def visualize_policy(self, policy, horizon=1000, num_episodes=1, mode='exploration'): self.mujoco_render_frames = True for ep in range(num_episodes): o = self.reset() d = False t = 0 while t < horizon and d is False: a = policy.get_action( o)[0] if mode == 'exploration' else policy.get_action( o)[1]['evaluation'] o, r, d, _ = self.step(a) t = t + 1 self.mujoco_render_frames = False def visualize_policy_offscreen(self, policy, horizon=1000, num_episodes=1, mode='exploration', save_loc='/tmp/', filename='newvid', camera_name=None): import skvideo.io for ep in range(num_episodes): print("Episode %d: rendering offline " % ep, end='', flush=True) o = self.reset() d = False t = 0 arrs = [] t0 = timer.time() while t < horizon and d is False: a = policy.get_action( o)[0] if mode == 'exploration' else policy.get_action( o)[1]['mean'] o, r, d, _ = self.step(a) t = t + 1 curr_frame = self.sim.render(width=640, height=480, mode='offscreen', camera_name=camera_name, device_id=0) arrs.append(curr_frame[::-1, :, :]) print(t, end=', ', flush=True) file_name = save_loc + filename + '_' + str(ep) + ".mp4" skvideo.io.vwrite(file_name, np.asarray(arrs)) print("saved", file_name) t1 = timer.time() print("time taken = %f" % (t1 - t0)) def render(self, mode='human', width=DEFAULT_SIZE, height=DEFAULT_SIZE): if mode == 'rgb_array': self._get_viewer(mode).render(width, height) # window size used for old mujoco-py: data = self._get_viewer(mode).read_pixels(width, height, depth=False) # original image is upside-down, so flip it return data[::-1, :, :] elif mode == 'depth_array': self._get_viewer(mode).render(width, height) # window size used for old mujoco-py: # Extract depth part of the read_pixels() tuple data = self._get_viewer(mode).read_pixels(width, height, depth=True)[1] # original image is upside-down, so flip it return data[::-1, :] elif mode == 'human': self._get_viewer(mode).render()
model = load_model_from_xml(MODEL_XML) sim = MjSim(model) viewer = MjViewer(sim) states = [{'box:x': +0.8, 'box:y': +0.8}, {'box:x': -0.8, 'box:y': +0.8}, {'box:x': -0.8, 'box:y': -0.8}, {'box:x': +0.8, 'box:y': -0.8}, {'box:x': +0.0, 'box:y': +0.0}] # MjModel.joint_name2id returns the index of a joint in # MjData.qpos. x_joint_i = sim.model.get_joint_qpos_addr("box:x") y_joint_i = sim.model.get_joint_qpos_addr("box:y") print_box_xpos(sim) while True: for state in states: sim_state = sim.get_state() sim_state.qpos[x_joint_i] = state["box:x"] sim_state.qpos[y_joint_i] = state["box:y"] sim.set_state(sim_state) sim.forward() print("updated state to", state) print_box_xpos(sim) viewer.render() if os.getenv('TESTING') is not None: break
class GripperTester: """ A class that is used to test gripper Args: gripper (GripperModel): A gripper instance to be tested pos (str): (x y z) position to place the gripper in string form, e.g. '0 0 0.3' quat (str): rotation to apply to gripper in string form, e.g. '0 0 1 0' to flip z axis gripper_low_pos (float): controls the gipper y position, larger -> higher gripper_high_pos (float): controls the gipper y high position larger -> higher, must be larger than gripper_low_pos box_size (None or 3-tuple of int): the size of the box to grasp, None defaults to [0.02, 0.02, 0.02] box_density (int): the density of the box to grasp step_time (int): the interval between two gripper actions render (bool): if True, show rendering """ def __init__( self, gripper, pos, quat, gripper_low_pos, gripper_high_pos, box_size=None, box_density=10000, step_time=400, render=True, ): # define viewer self.viewer = None world = MujocoWorldBase() # Add a table arena = TableArena(table_full_size=(0.4, 0.4, 0.1), table_offset=(0, 0, 0.1), has_legs=False) world.merge(arena) # Add a gripper self.gripper = gripper # Create another body with a slider joint to which we'll add this gripper gripper_body = ET.Element("body") gripper_body.set("pos", pos) gripper_body.set("quat", quat) # flip z gripper_body.append(new_joint(name="gripper_z_joint", type="slide", axis="0 0 -1", damping="50")) # Add all gripper bodies to this higher level body for body in gripper.worldbody: gripper_body.append(body) # Merge the all of the gripper tags except its bodies world.merge(gripper, merge_body=None) # Manually add the higher level body we created world.worldbody.append(gripper_body) # Create a new actuator to control our slider joint world.actuator.append(new_actuator(joint="gripper_z_joint", act_type="position", name="gripper_z", kp="500")) # Add an object for grasping # density is in units kg / m3 TABLE_TOP = [0, 0, 0.09] if box_size is None: box_size = [0.02, 0.02, 0.02] box_size = np.array(box_size) self.cube = BoxObject( name="object", size=box_size, rgba=[1, 0, 0, 1], friction=[1, 0.005, 0.0001], density=box_density ) object_pos = np.array(TABLE_TOP + box_size * [0, 0, 1]) mujoco_object = self.cube.get_obj() # Set the position of this object mujoco_object.set("pos", array_to_string(object_pos)) # Add our object to the world body world.worldbody.append(mujoco_object) # add reference objects for x and y axes x_ref = BoxObject( name="x_ref", size=[0.01, 0.01, 0.01], rgba=[0, 1, 0, 1], obj_type="visual", joints=None ).get_obj() x_ref.set("pos", "0.2 0 0.105") world.worldbody.append(x_ref) y_ref = BoxObject( name="y_ref", size=[0.01, 0.01, 0.01], rgba=[0, 0, 1, 1], obj_type="visual", joints=None ).get_obj() y_ref.set("pos", "0 0.2 0.105") world.worldbody.append(y_ref) self.world = world self.render = render self.simulation_ready = False self.step_time = step_time self.cur_step = 0 if gripper_low_pos > gripper_high_pos: raise ValueError( "gripper_low_pos {} is larger " "than gripper_high_pos {}".format(gripper_low_pos, gripper_high_pos) ) self.gripper_low_pos = gripper_low_pos self.gripper_high_pos = gripper_high_pos def start_simulation(self): """ Starts simulation of the test world """ model = self.world.get_model(mode="mujoco_py") self.sim = MjSim(model) if self.render: self.viewer = MjViewer(self.sim) self.sim_state = self.sim.get_state() # For gravity correction gravity_corrected = ["gripper_z_joint"] self._gravity_corrected_qvels = [self.sim.model.get_joint_qvel_addr(x) for x in gravity_corrected] self.gripper_z_id = self.sim.model.actuator_name2id("gripper_z") self.gripper_z_is_low = False self.gripper_actuator_ids = [self.sim.model.actuator_name2id(x) for x in self.gripper.actuators] self.gripper_is_closed = True self.object_id = self.sim.model.body_name2id(self.cube.root_body) object_default_pos = self.sim.data.body_xpos[self.object_id] self.object_default_pos = np.array(object_default_pos, copy=True) self.reset() self.simulation_ready = True def reset(self): """ Resets the simulation to the initial state """ self.sim.set_state(self.sim_state) self.cur_step = 0 def close(self): """ Close the viewer if it exists """ if self.viewer is not None: self.viewer.close() def step(self): """ Forward the simulation by one timestep Raises: RuntimeError: if start_simulation is not yet called. """ if not self.simulation_ready: raise RuntimeError("Call start_simulation before calling step") if self.gripper_z_is_low: self.sim.data.ctrl[self.gripper_z_id] = self.gripper_low_pos else: self.sim.data.ctrl[self.gripper_z_id] = self.gripper_high_pos if self.gripper_is_closed: self._apply_gripper_action(1) else: self._apply_gripper_action(-1) self._apply_gravity_compensation() self.sim.step() if self.render: self.viewer.render() self.cur_step += 1 def _apply_gripper_action(self, action): """ Applies binary gripper action Args: action (int): Action to apply. Should be -1 (open) or 1 (closed) """ gripper_action_actual = self.gripper.format_action(np.array([action])) # rescale normalized gripper action to control ranges ctrl_range = self.sim.model.actuator_ctrlrange[self.gripper_actuator_ids] bias = 0.5 * (ctrl_range[:, 1] + ctrl_range[:, 0]) weight = 0.5 * (ctrl_range[:, 1] - ctrl_range[:, 0]) applied_gripper_action = bias + weight * gripper_action_actual self.sim.data.ctrl[self.gripper_actuator_ids] = applied_gripper_action def _apply_gravity_compensation(self): """ Applies gravity compensation to the simulation """ self.sim.data.qfrc_applied[self._gravity_corrected_qvels] = self.sim.data.qfrc_bias[ self._gravity_corrected_qvels ] def loop(self, total_iters=1, test_y=False, y_baseline=0.01): """ Performs lower, grip, raise and release actions of a gripper, each separated with T timesteps Args: total_iters (int): Iterations to perform before exiting test_y (bool): test if object is lifted y_baseline (float): threshold for determining that object is lifted """ seq = [(False, False), (True, False), (True, True), (False, True)] for cur_iter in range(total_iters): for cur_plan in seq: self.gripper_z_is_low, self.gripper_is_closed = cur_plan for step in range(self.step_time): self.step() if test_y: if not self.object_height > y_baseline: raise ValueError( "object is lifed by {}, ".format(self.object_height) + "not reaching the requirement {}".format(y_baseline) ) @property def object_height(self): """ Queries the height (z) of the object compared to on the ground Returns: float: Object height relative to default (ground) object position """ return self.sim.data.body_xpos[self.object_id][2] - self.object_default_pos[2]
class my_env(parameterized.TestCase): def __init__(self): # super(lab_env, self).__init__(env) # 导入xml文档 self.model = load_model_from_path("assets/simpleEE_4box.xml") # 调用MjSim构建一个basic simulation self.sim = MjSim(model=self.model) self.sim = MjSim(self.model) self.viewer = MjViewer(self.sim) self.viewer._run_speed = 0.001 self.timestep = 0 # Sawyer Peg #self.init_qpos = np.array([-0.305, -0.83, 0.06086, 1.70464, -0.02976, 0.62496, -0.04712]) # Flexiv Peg self.init_qpos = np.array([-0.22, -0.43, 0.449, -2, -0.25, 0.799, 0.99]) for i in range(len(self.sim.data.qpos)): self.sim.data.qpos[i] = self.init_qpos[i] self.testQposFromSitePose( (np.array([0.57, 0.075, 0.08]), np.array([0.000000e+00, 1.000000e+00, 0.000000e+00, 6.123234e-17])), _INPLACE, True) print(self.sim.data.ctrl) print(self.sim.data.qpos) def get_state(self): self.sim.get_state() # 如果定义了相机 # self.sim.data.get_camera_xpos('[camera name]') def reset(self): self.sim.reset() self.timestep = 0 def step(self): # self.testQposFromSitePose((np.array([0.605, 0.075, 0.03]), np.array([0.000000e+00, 1.000000e+00, 0.000000e+00, 6.123234e-17])), _INPLACE) x=random.uniform(0.415, 0.635) y=random.uniform(-0.105, 0.105) self.testQposFromSitePose( (np.array([x, y, 0.045]), np.array([0.000000e+00, 1.000000e+00, 0.000000e+00, 6.123234e-17])), _INPLACE) # self.testQposFromSitePose( # (None, np.array([0.000000e+00, 1.000000e+00, 0.000000e+00, 6.123234e-17])), # _INPLACE, True) self.sim.step() # self.sim.data.ctrl[0] += 0.01 # print(self.sim.data.ctrl) # pdb.set_trace() # print(self.sim.data.qpos) print("sensordata", self.sim.data.sensordata) # self.viewer.add_overlay(const.GRID_TOPRIGHT, " ", SESSION_NAME) self.viewer.render() self.timestep += 1 def create_viewer(self, run_speed=0.0005): self.viewer = MjViewer(self.sim) self.viewer._run_speed = run_speed # self.viewer._hide_overlay = HIDE_OVERLAY # self.viewer.vopt.frame = DISPLAY_FRAME # self.viewer.cam.azimuth = CAM_AZIMUTH # self.viewer.cam.distance = CAM_DISTANCE # self.viewer.cam.elevation = CAM_ELEVATION def testQposFromSitePose(self, target, inplace, qpos_flag=False): physics = mujoco.Physics.from_xml_string(FlexivPeg_XML) target_pos, target_quat = target count = 0 physics2 = physics.copy(share_model=True) resetter = _ResetArm(seed=0) while True: result = ik.qpos_from_site_pose( physics=physics2, site_name=_SITE_NAME, target_pos=target_pos, target_quat=target_quat, joint_names=_JOINTS, tol=_TOL, max_steps=_MAX_STEPS, inplace=inplace, ) if result.success: break elif count < _MAX_RESETS: resetter(physics2) count += 1 else: raise RuntimeError( 'Failed to find a solution within %i attempts.' % _MAX_RESETS) self.assertLessEqual(result.steps, _MAX_STEPS) self.assertLessEqual(result.err_norm, _TOL) # pdb.set_trace() physics.data.qpos[:] = result.qpos for i in range(len(self.sim.data.qpos)): if qpos_flag: self.sim.data.qpos[i]=physics.data.qpos[i] else: self.sim.data.ctrl[i] = physics.data.qpos[i] # print(physics.data.qpos) mjlib.mj_fwdPosition(physics.model.ptr, physics.data.ptr) if target_pos is not None: pos = physics.named.data.site_xpos[_SITE_NAME] np.testing.assert_array_almost_equal(pos, target_pos) if target_quat is not None: xmat = physics.named.data.site_xmat[_SITE_NAME] quat = np.empty_like(target_quat) mjlib.mju_mat2Quat(quat, xmat) quat /= quat.ptp() # Normalize xquat so that its max-min range is 1
def print_state(state): time, qpos, qvel, act, udd_state = state.time, state.qpos, state.qvel, state.act, state.udd_state print("t: %5.3f" % time) print("qpos: ", qpos) print("qvel: ", qvel) print("tosser (slide,hinge): ", qpos[:2]) print("object (z,y,pitch): ", qpos[-3:]) model = load_model_from_path("../../xmls/tosser.xml") sim = MjSim(model) viewer = MjViewer(sim) sim_state = sim.get_state() while True: sim.set_state(sim_state) for i in range(1000): state = sim.get_state() # time, qpos, qvel, act, udd_state = state.time, state.qpos, state.qvel, state.act, state.udd_state # print(time, qpos, qvel) print_state(state) if i < 150: sim.data.ctrl[0] = -0.0 sim.data.ctrl[1] = -0.0 else: sim.data.ctrl[0] = -1.0 sim.data.ctrl[1] = -1.0
class MujocoEnv(gym.Env): """Superclass for all MuJoCo environments. """ def __init__(self, model_path, frame_skip): if model_path.startswith("/"): fullpath = model_path else: fullpath = os.path.join(os.path.dirname(__file__), "assets", model_path) if not path.exists(fullpath): raise IOError("File %s does not exist" % fullpath) self.frame_skip = frame_skip self.model = load_model_from_path(fullpath) self.sim = MjSim(self.model) self.data = self.sim.data self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self.mujoco_render_frames = False self.init_qpos = self.data.qpos.ravel().copy() self.init_qvel = self.data.qvel.ravel().copy() observation, _reward, done, _info = self._step(np.zeros(self.model.nu)) assert not done self.obs_dim = np.sum([o.size for o in observation]) if type(observation) is tuple else observation.size bounds = self.model.actuator_ctrlrange.copy() low = bounds[:, 0] high = bounds[:, 1] self.action_space = spaces.Box(low, high) high = np.inf*np.ones(self.obs_dim) low = -high self.observation_space = spaces.Box(low, high) self._seed() def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] # methods to override: # ---------------------------- def reset_model(self): """ Reset the robot degrees of freedom (qpos and qvel). Implement this in each subclass. """ raise NotImplementedError def mj_viewer_setup(self): """ Due to specifics of new mujoco rendering, the standard viewer cannot be used with this set-up. Instead we use this mujoco specific function. """ pass def viewer_setup(self): """ Does not work. Use mj_viewer_setup() instead """ pass # ----------------------------- def _reset(self): self.sim.reset() self.sim.forward() ob = self.reset_model() return ob def set_state(self, qpos, qvel): assert qpos.shape == (self.model.nq,) and qvel.shape == (self.model.nv,) state = self.sim.get_state() for i in range(self.model.nq): state.qpos[i] = qpos[i] for i in range(self.model.nv): state.qvel[i] = qvel[i] self.sim.set_state(state) self.sim.forward() @property def dt(self): return self.model.opt.timestep * self.frame_skip def do_simulation(self, ctrl, n_frames): for i in range(self.model.nu): self.sim.data.ctrl[i] = ctrl[i] for _ in range(n_frames): self.sim.step() if self.mujoco_render_frames is True: self.mj_render() def mj_render(self): try: self.viewer.render() except: self.mj_viewer_setup() self.viewer._run_speed = 1.0 #self.viewer._run_speed /= self.frame_skip self.viewer.render() def _get_viewer(self): return None def state_vector(self): state = self.sim.get_state() return np.concatenate([ state.qpos.flat, state.qvel.flat]) # ----------------------------- def visualize_policy(self, policy, horizon=1000, num_episodes=1, mode='exploration'): self.mujoco_render_frames = True for ep in range(num_episodes): o = self.reset() d = False t = 0 while t < horizon and d is False: a = policy.get_action(o)[0] if mode == 'exploration' else policy.get_action(o)[1]['evaluation'] o, r, d, _ = self.step(a) t = t+1 self.mujoco_render_frames = False def visualize_policy_offscreen(self, policy, horizon=1000, num_episodes=1, mode='exploration', save_loc='/tmp/', filename='newvid', camera_name=None): import skvideo.io for ep in range(num_episodes): print("Episode %d: rendering offline " % ep, end='', flush=True) o = self.reset() d = False t = 0 arrs = [] t0 = timer.time() while t < horizon and d is False: a = policy.get_action(o)[0] if mode == 'exploration' else policy.get_action(o)[1]['evaluation'] o, r, d, _ = self.step(a) t = t+1 curr_frame = self.sim.render(width=640, height=480, mode='offscreen', camera_name=camera_name, device_id=0) arrs.append(curr_frame[::-1,:,:]) print(t, end=', ', flush=True) file_name = save_loc + filename + str(ep) + ".mp4" skvideo.io.vwrite( file_name, np.asarray(arrs)) print("saved", file_name) t1 = timer.time() print("time taken = %f"% (t1-t0))