Esempio n. 1
0
    def apply(self, x, d=None, dt=None, rng=np.random, copy=True, **kwargs):
        """Run process on a given input.

        Keyword arguments that do not appear in the parameter list below
        will be passed to the ``make_step`` function of this process.

        Parameters
        ----------
        x : ndarray
            The input signal given to the process.
        d : int, optional
            Output dimensionality. If None, ``default_size_out`` will be used.
        dt : float, optional
            Simulation timestep. If None, ``default_dt`` will be used.
        rng : `numpy.random.mtrand.RandomState`
            Random number generator used for stochstic processes.
        copy : bool, optional
            If True, a new output array will be created for output.
            If False, the input signal ``x`` will be overwritten.
        """
        shape_in = as_shape(np.asarray(x[0]).shape, min_dim=1)
        shape_out = as_shape(self.default_size_out if d is None else d)
        dt = self.default_dt if dt is None else dt
        rng = self.get_rng(rng)
        state = self.make_state(shape_in, shape_out, dt)
        step = self.make_step(shape_in, shape_out, dt, rng, state, **kwargs)
        output = np.zeros((len(x), ) + shape_out) if copy else x
        for i, xi in enumerate(x):
            output[i] = step((i + 1) * dt, xi)
        return output
Esempio n. 2
0
    def run_steps(self, n_steps, d=None, dt=None, rng=np.random, **kwargs):
        """Run process without input for given number of steps.

        Keyword arguments that do not appear in the parameter list below
        will be passed to the ``make_step`` function of this process.

        Parameters
        ----------
        n_steps : int
            The number of steps to run.
        d : int, optional
            Output dimensionality. If None, ``default_size_out`` will be used.
        dt : float, optional
            Simulation timestep. If None, ``default_dt`` will be used.
        rng : `numpy.random.mtrand.RandomState`
            Random number generator used for stochstic processes.
        """
        shape_in = as_shape(0)
        shape_out = as_shape(self.default_size_out if d is None else d)
        dt = self.default_dt if dt is None else dt
        rng = self.get_rng(rng)
        state = self.make_state(shape_in, shape_out, dt)
        step = self.make_step(shape_in, shape_out, dt, rng, state, **kwargs)
        output = np.zeros((n_steps, ) + shape_out)
        for i in range(n_steps):
            output[i] = step((i + 1) * dt)
        return output
Esempio n. 3
0
    def apply(self, x, d=None, dt=None, rng=np.random, copy=True, **kwargs):
        """Run process on a given input.

        Keyword arguments that do not appear in the parameter list below
        will be passed to the ``make_step`` function of this process.

        Parameters
        ----------
        x : ndarray
            The input signal given to the process.
        d : int, optional (Default: None)
            Output dimensionality. If None, ``default_size_out`` will be used.
        dt : float, optional (Default: None)
            Simulation timestep. If None, ``default_dt`` will be used.
        rng : `numpy.random.RandomState` (Default: ``numpy.random``)
            Random number generator used for stochstic processes.
        copy : bool, optional (Default: True)
            If True, a new output array will be created for output.
            If False, the input signal ``x`` will be overwritten.
        """
        shape_in = as_shape(np.asarray(x[0]).shape, min_dim=1)
        shape_out = as_shape(self.default_size_out if d is None else d)
        dt = self.default_dt if dt is None else dt
        rng = self.get_rng(rng)
        step = self.make_step(shape_in, shape_out, dt, rng, **kwargs)
        output = np.zeros((len(x),) + shape_out) if copy else x
        for i, xi in enumerate(x):
            output[i] = step((i+1) * dt, xi)
        return output
Esempio n. 4
0
    def run_steps(self, n_steps, d=None, dt=None, rng=np.random, **kwargs):
        """Run process without input for given number of steps.

        Keyword arguments that do not appear in the parameter list below
        will be passed to the ``make_step`` function of this process.

        Parameters
        ----------
        n_steps : int
            The number of steps to run.
        d : int, optional (Default: None)
            Output dimensionality. If None, ``default_size_out`` will be used.
        dt : float, optional (Default: None)
            Simulation timestep. If None, ``default_dt`` will be used.
        rng : `numpy.random.RandomState` (Default: ``numpy.random``)
            Random number generator used for stochstic processes.
        """
        shape_in = as_shape(0)
        shape_out = as_shape(self.default_size_out if d is None else d)
        dt = self.default_dt if dt is None else dt
        rng = self.get_rng(rng)
        step = self.make_step(shape_in, shape_out, dt, rng, **kwargs)
        output = np.zeros((n_steps,) + shape_out)
        for i in range(n_steps):
            output[i] = step((i+1) * dt)
        return output
Esempio n. 5
0
 def apply(self, x, d=None, dt=None, rng=np.random, copy=True, **kwargs):
     """Run process on a given input."""
     shape_in = as_shape(np.asarray(x[0]).shape, min_dim=1)
     shape_out = as_shape(self.default_size_out if d is None else d)
     dt = self.default_dt if dt is None else dt
     rng = self.get_rng(rng)
     step = self.make_step(shape_in, shape_out, dt, rng, **kwargs)
     output = np.zeros((len(x),) + shape_out) if copy else x
     for i, xi in enumerate(x):
         output[i] = step(i * dt, xi)
     return output
Esempio n. 6
0
 def run_steps(self, n_steps, d=None, dt=None, rng=np.random, **kwargs):
     """Run process without input for given number of steps."""
     shape_in = as_shape(0)
     shape_out = as_shape(self.default_size_out if d is None else d)
     dt = self.default_dt if dt is None else dt
     rng = self.get_rng(rng)
     step = self.make_step(shape_in, shape_out, dt, rng, **kwargs)
     output = np.zeros((n_steps,) + shape_out)
     for i in range(n_steps):
         output[i] = step(i * dt)
     return output
Esempio n. 7
0
    def filt(self, x, dt=None, axis=0, y0=None, copy=True, filtfilt=False):
        """Filter ``x`` with this synapse model.

        Parameters
        ----------
        x : array_like
            The signal to filter.
        dt : float, optional (Default: None)
            The timestep of the input signal.
            If None, ``default_dt`` will be used.
        axis : int, optional (Default: 0)
            The axis along which to filter.
        y0 : array_like, optional (Default: None)
            The starting state of the filter output. If None, the initial
            value of the input signal along the axis filtered will be used.
        copy : bool, optional (Default: True)
            Whether to copy the input data, or simply work in-place.
        filtfilt : bool, optional (Default: False)
            If True, runs the process forward then backward on the signal,
            for zero-phase filtering (like Matlab's ``filtfilt``).
        """
        # This function is very similar to `Process.apply`, but allows for
        # a) filtering along any axis, and b) zero-phase filtering (filtfilt).
        dt = self.default_dt if dt is None else dt
        filtered = np.array(x, copy=copy)
        filt_view = np.rollaxis(filtered, axis=axis)  # rolled view on filtered

        if y0 is None:
            y0 = filt_view[0]

        shape_in = shape_out = as_shape(filt_view[0].shape, min_dim=1)
        step = self.make_step(shape_in,
                              shape_out,
                              dt,
                              None,
                              y0=y0,
                              dtype=x.dtype)

        for i, signal_in in enumerate(filt_view):
            filt_view[i] = step(i * dt, signal_in)

        if filtfilt:  # Flip the filt_view and filter again
            n = len(filt_view) - 1
            filt_view = filt_view[::-1]
            for i, signal_in in enumerate(filt_view):
                filt_view[i] = step((n - i) * dt, signal_in)

        return filtered
Esempio n. 8
0
    def filt(self, x, dt=None, axis=0, y0=None, copy=True, filtfilt=False):
        """Filter ``x`` with this synapse model.

        Parameters
        ----------
        x : array_like
            The signal to filter.
        dt : float, optional (Default: None)
            The timestep of the input signal.
            If None, ``default_dt`` will be used.
        axis : int, optional (Default: 0)
            The axis along which to filter.
        y0 : array_like, optional (Default: None)
            The starting state of the filter output. If None, the initial
            value of the input signal along the axis filtered will be used.
        copy : bool, optional (Default: True)
            Whether to copy the input data, or simply work in-place.
        filtfilt : bool, optional (Default: False)
            If True, runs the process forward then backward on the signal,
            for zero-phase filtering (like Matlab's ``filtfilt``).
        """
        # This function is very similar to `Process.apply`, but allows for
        # a) filtering along any axis, and b) zero-phase filtering (filtfilt).
        dt = self.default_dt if dt is None else dt
        filtered = np.array(x, copy=copy)
        filt_view = np.rollaxis(filtered, axis=axis)  # rolled view on filtered

        if y0 is None:
            y0 = filt_view[0]

        shape_in = shape_out = as_shape(filt_view[0].shape, min_dim=1)
        step = self.make_step(
            shape_in, shape_out, dt, None, y0=y0, dtype=filtered.dtype)

        for i, signal_in in enumerate(filt_view):
            filt_view[i] = step(i * dt, signal_in)

        if filtfilt:  # Flip the filt_view and filter again
            n = len(filt_view) - 1
            filt_view = filt_view[::-1]
            for i, signal_in in enumerate(filt_view):
                filt_view[i] = step((n - i) * dt, signal_in)

        return filtered
Esempio n. 9
0
def test_as_shape_errors():
    """Tests errors generated by the `as_shape` function"""
    with pytest.raises(ValueError, match="cannot be safely converted to a shape"):
        as_shape(1.0)  # float is noniterable and noninteger