Esempio n. 1
0
def ensemble(state, X_test, y_test, g):
    mod1 = Model().to(state['device'])
    mod2 = Model().to(state['device'])
    mod3 = Model().to(state['device'])
    mod4 = Model().to(state['device'])
    mod = Model().to(state['device'])
    mod1.load_state_dict(torch.load(state['path1'])['model_state_dict'])
    mod2.load_state_dict(torch.load(state['path2'])['model_state_dict'])
    mod3.load_state_dict(torch.load(state['path3'])['model_state_dict'])
    mod4.load_state_dict(torch.load(state['path4'])['model_state_dict'])

    for p, p1, p2, p3, p4 in zip(mod.parameters(), mod1.parameters(),
                                 mod2.parameters(), mod3.parameters(),
                                 mod4.parameters()):
        p.data.copy_(
            p1.data.mul(0.25).add(p2.data.mul(0.25)).add(
                p3.data.mul(0.25)).add(p4.data.mul(0.25)))
    mod.state_dict()
    acc = test_with_dropout(X_test, y_test, mod, state['device'],
                            state['cuda'])
    path = g + str(state['itr']) + 'epoch.' + str(state['acq']) + 'acq.pth.tar'
    state['rep'] = path
    torch.save({'model_state_dict': mod.state_dict()}, state['rep'])

    return mod, acc
Esempio n. 2
0
def ini_model_train(opt):
    X_ini, y_ini, X_test, y_test, X_train_All, y_train_All = ini_model(opt)
    mod = Model().to(device)
    optimizer = optim.SGD(mod.parameters(), lr=opt.ini_lr)
    criterion = nn.CrossEntropyLoss()
    num_batches_train = X_ini.shape[0] // opt.ini_batch_size
    mod.train()
    for i in range(opt.ini_epoch):
        loss = 0
        for j in range(num_batches_train):
            slce = get_slice(j, opt.ini_batch_size)
            X_tra = torch.from_numpy(X_ini[slce]).float().to(device)
            Y_tra = torch.from_numpy(y_ini[slce]).long().to(device)
            optimizer.zero_grad()
            out = mod(X_tra)
            batch_loss = criterion(out, Y_tra)
            batch_loss.backward()
            optimizer.step()
            loss += batch_loss
        mod.eval()
        acc = test_without_dropout(X_test, y_test, mod, device)
        print('\n[{}/{} epoch], training loss:{:.4f}, test accuracy is:{} \n'.
              format(i, opt.ini_epoch,
                     loss.item() / num_batches_train, acc))
        if i + 1 == opt.ini_epoch:
            for d in range(opt.num_dev):
                torch.save(
                    {
                        'epoch': i,
                        'model_state_dict': mod.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                        'loss': loss.item()
                    },
                    os.path.join(opt.ini_model_path, 'device' + str(d),
                                 "ini.model.pth.tar"))
            torch.save(
                {
                    'epoch': i,
                    'model_state_dict': mod.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'loss': loss.item()
                }, opt.ini_model_path)
    return X_test, y_test, X_train_All, y_train_All
Esempio n. 3
0
def en_ave(mod1, mod2, mod3, mod4, X_test, y_test, state):
    print('=> load average ensemble')
    mod = Model().to(device)
    for p, p1, p2, p3, p4 in zip(mod.parameters(), mod1.parameters(),
                                 mod2.parameters(), mod3.parameters(),
                                 mod4.parameters()):
        p.data.copy_(
            p1.data.mul(0.25).add(p2.data.mul(0.25)).add(
                p3.data.mul(0.25)).add(p4.data.mul(0.25)))
    acc = test_without_dropout(X_test, y_test, mod, device)
    path = os.path.join('exp', 'ensemble.') + str(
        state['itr']) + 'epoch.' + str(state['acq']) + 'acq.pth.tar'
    state['rep'] = path
    torch.save({'model_state_dict': mod.state_dict()}, state['rep'])
    return mod, acc
Esempio n. 4
0
def ini_train(X_ini, y_ini, X_te, y_te, epochs, paths, device, batch_size, lr,
              momentum, arr_drop):
    mod = Model(arr_drop).to(device)
    optimizer = optim.SGD(mod.parameters(), lr=lr, momentum=momentum)
    criterion = nn.CrossEntropyLoss()
    #batch_size = 200
    num_batches_train = X_ini.shape[0] // batch_size
    print("number of batch ", num_batches_train)
    mod.train()
    for i in range(epochs):
        loss = 0
        for j in range(num_batches_train):
            slce = get_slice(j, batch_size)
            X_tra = torch.from_numpy(X_ini[slce]).float().to(device)
            Y_tra = torch.from_numpy(y_ini[slce]).long().to(device)
            optimizer.zero_grad()
            out = mod(X_tra)
            batch_loss = criterion(out, Y_tra)
            batch_loss.backward()
            optimizer.step()
            loss += batch_loss
        mod.eval()
        with torch.no_grad():
            X_va = torch.from_numpy(X_te).float().to(device)
            Y_va = torch.from_numpy(y_te).long().to(device)
            output = mod(X_va)
            preds = torch.max(output, 1)[1]
            acc = accuracy_score(Y_va, preds)
        print('\n[{}/{} epoch], training loss:{:.4f}, test accuracy is:{} \n'.
              format(i, epochs,
                     loss.item() / num_batches_train, acc))
    if i + 1 == epochs:
        for path in paths:
            torch.save(
                {
                    'epoch': i,
                    'model_state_dict': mod.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'loss': loss.item()
                }, os.path.join(path, "ini.model.pth.tar"))
    return mod
Esempio n. 5
0
def train():
    model = Model()
    model.to("cuda:0")
    Opt = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)
    # checkpoint = torch.load("./model.pth")
    # model.load_state_dict(checkpoint["model"])
    # Opt.load_state_dict(checkpoint["Opt"])
    for i in range(10000):
        Opt.zero_grad()
        imgs, targets = read_batch()
        imgs = torch.tensor(imgs, dtype=torch.float32).to("cuda:0")
        targets = torch.tensor(targets, dtype=torch.float32).to("cuda:0")
        preds = model(imgs)
        loss = make_loss(preds, targets)
        loss.backward()
        Opt.step()
        if i % 10 == 0:
            print("Iteration: %d, Loss: %f"%(i, loss))
        if i % 10 == 0:
            state = {'model':model.state_dict(), 'Opt':Opt.state_dict(), 'itr':i}
            torch.save(state, "./model.pth")
Esempio n. 6
0
def model(dataset, model_name=None, device=None, train=True):
    """加载模型"""
    device = device or torch.device(
        "cuda" if torch.cuda.is_available() else "cpu")
    net = Model(vocab_size=dataset.vocab_size,
                embedding_dim=config.embedding_dim,
                output_size=dataset.target_vocab_size,
                encoder_hidden_size=config.encoder_hidden_size,
                decoder_hidden_size=config.decoder_hidden_size,
                encoder_layers=config.encoder_layers,
                decoder_layers=config.decoder_layers,
                dropout=config.dropout,
                embedding_weights=dataset.vector_weights,
                device=device)
    if model_name:  # 如果指定了模型名称, 就加载对应的模型
        pre_trained_state_dict = torch.load(FILE_PATH + config.model_path +
                                            model_name,
                                            map_location=device)
        state_dict = net.state_dict()
        state_dict.update(pre_trained_state_dict)
        net.load_state_dict(state_dict)
    net.train() if train else net.eval()
    return net
Esempio n. 7
0
                position_target = data['point_map']
                img = img.to(device=device)
                position_target = position_target.to(device=device,
                                                     dtype=torch.float32)
                pred = model(img)
                logits = pred['logits']
                # loss calculation
                loss_pos_val = loss_position(logits, position_target)
                epoch_loss_val += loss_pos_val.item() * img.size(0)

        loss_val.append(epoch_loss_val / len(val_indices))
        # print statistics
        print(f"epoch:[%.d] Validation loss: %.5f" % (epoch + 1, loss_val[-1]))

# Save the model
torch.save(model.state_dict(), 'stats/model_saved.pth')

# Save latent space feature maps along with some log statistics
latent = latent[1:, ...]  # removes first, which was an torch.empty
loss_train = np.array(loss_train)
loss_val = np.array(loss_val)
mdic = {
    'latent': latent,
    'loss_train': loss_train,
    'loss_val': loss_val,
    'batch_size': batch_size,
    'validation_split': validation_split,
    'dataset_size': dataset_size,
    'random_seed': random_seed
}
savemat("stats/log.mat", mdic)
Esempio n. 8
0
def random_run(acquisition_iterations, X_Pool, y_Pool, pool_subset,
               dropout_iterations, nb_classes, Queries, X_test, y_test, rep,
               X_old, y_old, device, itr, cuda, g):
    mod = Model().to(device)
    if cuda:
        cp = torch.load(rep)
        print("\n ********load gpu version******* \n")
    else:
        cp = torch.load(rep, map_location='cpu')
    mod.load_state_dict(cp['model_state_dict'])
    optimizer = optim.Adam(mod.parameters(), lr=0.001,
                           weight_decay=0.5)  #,weight_decay=0.5
    #optimizer = optim.SGD(mod.parameters(), lr=0.001,weight_decay=0.5)
    optimizer.load_state_dict(cp['optimizer_state_dict'])
    criterion = nn.CrossEntropyLoss()
    X_train = np.empty([0, 1, 28, 28])
    y_train = np.empty([
        0,
    ])
    AA = []
    losses_train = []
    #acc = test(test_loader,mod,device,cuda)
    acc = test(X_test, y_test, mod, device, cuda)
    AA.append(acc)
    print('initial test accuracy: ', acc)
    for i in range(acquisition_iterations):
        pool_subset_dropout = np.asarray(
            random.sample(range(0, X_Pool.shape[0]), pool_subset))
        X_Pool_Dropout = X_Pool[pool_subset_dropout, :, :, :]
        y_Pool_Dropout = y_Pool[pool_subset_dropout]

        x_pool_index = np.random.choice(X_Pool_Dropout.shape[0],
                                        Queries,
                                        replace=False)
        Pooled_X = X_Pool_Dropout[x_pool_index, :, :, :]
        Pooled_Y = y_Pool_Dropout[x_pool_index]

        delete_Pool_X = np.delete(X_Pool, (pool_subset_dropout), axis=0)
        delete_Pool_Y = np.delete(y_Pool, (pool_subset_dropout), axis=0)

        delete_Pool_X_Dropout = np.delete(X_Pool_Dropout, (x_pool_index),
                                          axis=0)
        delete_Pool_Y_Dropout = np.delete(y_Pool_Dropout, (x_pool_index),
                                          axis=0)

        X_Pool = np.concatenate((delete_Pool_X, delete_Pool_X_Dropout), axis=0)
        y_Pool = np.concatenate((delete_Pool_Y, delete_Pool_Y_Dropout), axis=0)
        print('updated pool size is ', X_Pool.shape[0])

        X_train = np.concatenate((X_train, Pooled_X), axis=0)
        y_train = np.concatenate((y_train, Pooled_Y), axis=0)
        print('number of data points from pool', X_train.shape[0])

        batch_size = 100
        X = np.vstack((X_old, Pooled_X))
        y = np.hstack((y_old, Pooled_Y))
        X, y = shuffle(X, y)
        num_batch = X.shape[0] // batch_size
        print("number of batch: ", num_batch)
        mod.train()
        for h in range(itr):
            losses = 0
            for j in range(num_batch):
                slce = get_slice(j, batch_size)
                X_fog_ = torch.from_numpy(X[slce]).float().to(device)
                y_fog_ = torch.from_numpy(y[slce]).long().to(device)
                optimizer.zero_grad()
                out = mod(X_fog_)
                train_loss = criterion(out, y_fog_)
                losses += train_loss
                train_loss.backward()
                optimizer.step()
            losses_train.append(losses.item() / num_batch)
        acc = test(X_test, y_test, mod, device, cuda)
        print('test accuracy: ', acc)
        AA.append(acc)
    torch.save(
        {
            'model_state_dict': mod.state_dict(),
            'optimizer_state_dict': optimizer.state_dict()
        }, g)
    return AA, mod, X_train, y_train, losses_train, optimizer
Esempio n. 9
0
def main(args: argparse.Namespace):
    # Load input data
    with open(args.train_metadata, 'r') as f:
        train_posts = json.load(f)

    with open(args.val_metadata, 'r') as f:
        val_posts = json.load(f)

    # Load labels
    labels = {}
    with open(args.label_intent, 'r') as f:
        intent_labels = json.load(f)
        labels['intent'] = {}
        for label in intent_labels:
            labels['intent'][label] = len(labels['intent'])

    with open(args.label_semiotic, 'r') as f:
        semiotic_labels = json.load(f)
        labels['semiotic'] = {}
        for label in semiotic_labels:
            labels['semiotic'][label] = len(labels['semiotic'])

    with open(args.label_contextual, 'r') as f:
        contextual_labels = json.load(f)
        labels['contextual'] = {}
        for label in contextual_labels:
            labels['contextual'][label] = len(labels['contextual'])

    # Build dictionary from training set
    train_captions = []
    for post in train_posts:
        train_captions.append(post['orig_caption'])
    dictionary = Dictionary(tokenizer_method="TreebankWordTokenizer")
    dictionary.build_dictionary_from_captions(train_captions)

    # Set up torch device
    if 'cuda' in args.device and torch.cuda.is_available():
        device = torch.device(args.device)
        kwargs = {'pin_memory': True}
    else:
        device = torch.device('cpu')
        kwargs = {}

    # Set up number of workers
    num_workers = min(multiprocessing.cpu_count(), args.num_workers)

    # Set up data loaders differently based on the task
    # TODO: Extend to ELMo + word2vec etc.
    if args.type == 'image_only':
        train_dataset = ImageOnlyDataset(train_posts, labels)
        val_dataset = ImageOnlyDataset(val_posts, labels)
        train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                        batch_size=args.batch_size,
                                                        shuffle=args.shuffle,
                                                        num_workers=num_workers,
                                                        collate_fn=collate_fn_pad_image_only,
                                                        **kwargs)
        val_data_loader = torch.utils.data.DataLoader(val_dataset,
                                                    batch_size=1,
                                                    num_workers=num_workers,
                                                    collate_fn=collate_fn_pad_image_only,
                                                    **kwargs)
    elif args.type == 'image_text':
        train_dataset = ImageTextDataset(train_posts, labels, dictionary)
        val_dataset = ImageTextDataset(val_posts, labels, dictionary)
        train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                        batch_size=args.batch_size,
                                                        shuffle=args.shuffle,
                                                        num_workers=num_workers,
                                                        collate_fn=collate_fn_pad_image_text,
                                                        **kwargs)
        val_data_loader = torch.utils.data.DataLoader(val_dataset,
                                                    batch_size=1,
                                                    num_workers=num_workers,
                                                    collate_fn=collate_fn_pad_image_text,
                                                    **kwargs)
    elif args.type == 'text_only':
        train_dataset = TextOnlyDataset(train_posts, labels, dictionary)
        val_dataset = TextOnlyDataset(val_posts, labels, dictionary)
        train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                        batch_size=args.batch_size,
                                                        shuffle=args.shuffle,
                                                        num_workers=num_workers,
                                                        collate_fn=collate_fn_pad_text_only,
                                                        **kwargs)
        val_data_loader = torch.utils.data.DataLoader(val_dataset,
                                                    batch_size=1,
                                                    num_workers=num_workers,
                                                    collate_fn=collate_fn_pad_text_only,
                                                    **kwargs)

    # Set up the model
    model = Model(vocab_size=dictionary.size()).to(device)

    # Set up an optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_scheduler_step_size, gamma=args.lr_scheduler_gamma) # decay by 0.1 every 15 epochs

    # Set up loss function
    loss_fn = torch.nn.CrossEntropyLoss()

    # Setup tensorboard
    if args.tensorboard:
        writer = tensorboard.SummaryWriter(log_dir=args.log_dir + "/" + args.name, flush_secs=1)
    else:
        writer = None

    # Training loop
    if args.classification == 'intent':
        keys = ['intent']
    elif args.classification == 'semiotic':
        keys = ['semiotic']
    elif args.classification == 'contextual':
        keys = ['contextual']
    elif args.classification == 'all':
        keys = ['intent', 'semiotic', 'contextual']
    else:
        raise ValueError("args.classification doesn't exist.")
    best_auc_ovr = 0.0
    best_auc_ovo = 0.0
    best_acc = 0.0
    best_model = None
    best_optimizer = None
    best_scheduler = None
    for epoch in range(args.epochs):
        for mode in ["train", "eval"]:
            # Set up a progress bar
            if mode == "train":
                pbar = tqdm.tqdm(enumerate(train_data_loader), total=len(train_data_loader))
                model.train()
            else:
                pbar = tqdm.tqdm(enumerate(val_data_loader), total=len(val_data_loader))
                model.eval()

            total_loss = 0
            label = dict.fromkeys(keys, np.array([], dtype=np.int))
            pred = dict.fromkeys(keys, None)
            for _, batch in pbar:
                if 'caption' not in batch:
                    caption_data = None
                else:
                    caption_data = batch['caption'].to(device)
                if 'image' not in batch:
                    image_data = None
                else:
                    image_data = batch['image'].to(device)
                label_batch = {}
                for key in keys:
                    label_batch[key] = batch['label'][key].to(device)
                    
                if mode == "train":
                    model.zero_grad()

                pred_batch = model(image_data, caption_data)
                
                for key in keys:
                    label[key] = np.concatenate((label[key], batch['label'][key].cpu().numpy()))
                    x = pred_batch[key].detach().cpu().numpy()
                    x_max = np.max(x, axis=1).reshape(-1, 1)
                    z = np.exp(x - x_max)
                    prediction_scores = z / np.sum(z, axis=1).reshape(-1, 1)
                    if pred[key] is not None:
                        pred[key] = np.vstack((pred[key], prediction_scores))
                    else:
                        pred[key] = prediction_scores
                       
                loss_batch = {}
                loss = None
                for key in keys:
                    loss_batch[key] = loss_fn(pred_batch[key], label_batch[key])
                    if loss is None:
                        loss = loss_batch[key]
                    else:
                        loss += loss_bath[key] 

                total_loss += loss.item()

                if mode == "train":
                    loss.backward()
                    optimizer.step()

            # Terminate the progress bar
            pbar.close()
            
            # Update lr scheduler
            if mode == "train":
                scheduler.step()

            for key in keys:
                auc_score_ovr = roc_auc_score(label[key], pred[key], multi_class='ovr') # pylint: disable-all
                auc_score_ovo = roc_auc_score(label[key], pred[key], multi_class='ovo') # pylint: disable-all
                accuracy = accuracy_score(label[key], np.argmax(pred[key], axis=1))
                print("[{} - {}] [AUC-OVR={:.3f}, AUC-OVO={:.3f}, ACC={:.3f}]".format(mode, key, auc_score_ovr, auc_score_ovo, accuracy))
                
                if mode == "eval":
                    best_auc_ovr = max(best_auc_ovr, auc_score_ovr)
                    best_auc_ovo = max(best_auc_ovo, auc_score_ovo)
                    best_acc = max(best_acc, accuracy)
                    best_model = model
                    best_optimizer = optimizer
                    best_scheduler = scheduler
                
                if writer:
                    writer.add_scalar('AUC-OVR/{}-{}'.format(mode, key), auc_score_ovr, epoch)
                    writer.add_scalar('AUC-OVO/{}-{}'.format(mode, key), auc_score_ovo, epoch)
                    writer.add_scalar('ACC/{}-{}'.format(mode, key), accuracy, epoch)
                    writer.flush()

            if writer:
                writer.add_scalar('Loss/{}'.format(mode), total_loss, epoch)
                writer.flush()

            print("[{}] Epoch {}: Loss = {}".format(mode, epoch, total_loss))

    hparam_dict = {
        'train_split': args.train_metadata,
        'val_split': args.val_metadata,
        'lr': args.lr,
        'epochs': args.epochs,
        'batch_size': args.batch_size,
        'num_workers': args.num_workers,
        'shuffle': args.shuffle,
        'lr_scheduler_gamma': args.lr_scheduler_gamma,
        'lr_scheduler_step_size': args.lr_scheduler_step_size,
    }
    metric_dict = {
        'AUC-OVR': best_auc_ovr,
        'AUC-OVO': best_auc_ovo,
        'ACC': best_acc
    }

    if writer:
        writer.add_hparams(hparam_dict=hparam_dict, metric_dict=metric_dict)
        writer.flush()
    
    Path(args.output_dir).mkdir(exist_ok=True)
    torch.save({
        'hparam_dict': hparam_dict,
        'metric_dict': metric_dict,
        'model_state_dict': model.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
        'scheduler_state_dict': scheduler.state_dict(),
    }, Path(args.output_dir) / '{}.pt'.format(args.name))