Esempio n. 1
0
def synthesis(text, args):
    m = Model()
    m.load_state_dict(load_checkpoint(args.restore_path))
    print("[%s][%s] Synthesizing:" % (args.lang, args.spk), text)

    text = np.asarray([1] + list(text.encode('utf-8')) + [2])
    text = t.LongTensor(text).unsqueeze(0)
    text = text
    mel_input = t.zeros([1, 1, 80])
    pos_text = t.arange(1, text.size(1) + 1).unsqueeze(0)
    pos_text = pos_text
    lang_to_id = json.load(open(os.path.join(args.data_path, 'lang_id.json')))
    spk_to_id = json.load(open(os.path.join(args.data_path, 'spk_id.json')))
    lang_id = lang_to_id[args.lang]
    spk_id = spk_to_id[args.spk]

    lang_id = t.LongTensor([lang_id])
    spk_id = t.LongTensor([spk_id])
    m.train(False)
    pbar = tqdm(range(args.max_len))
    with t.no_grad():
        for i in pbar:
            pos_mel = t.arange(1, mel_input.size(1) + 1).unsqueeze(0)
            mel_pred, postnet_pred, attn, stop_token, _, attn_dec = \
                m.forward(text, mel_input, pos_text, pos_mel, lang_id, spk_id)
            mel_input = t.cat([mel_input, mel_pred[:, -1:, :]], dim=1)
            if stop_token[:, -1].item() > 0:
                break

    mel = postnet_pred.squeeze(0).cpu().numpy()
    wav = mel2wav(mel)
    np.save(args.out_path + "_mel.npy", mel)
    write(args.out_path + ".wav", hp.sr, wav)
    plot_mel(args.out_path + "_mel.png", mel)
    plot_attn(attn, args.out_path + '_align.png')
Esempio n. 2
0
def synthesis(text, args):
    m = Model()
    m_post = ModelPostNet()

    m.load_state_dict(load_checkpoint(args.restore_step1, "transformer"))
    m_post.load_state_dict(load_checkpoint(args.restore_step2, "postnet"))

    text = np.asarray(text_to_sequence(text, [hp.cleaners]))
    text = t.LongTensor(text).unsqueeze(0)
    text = text.cuda()
    mel_input = t.zeros([1,1, 80]).cuda()
    pos_text = t.arange(1, text.size(1)+1).unsqueeze(0)
    pos_text = pos_text.cuda()

    m=m.cuda()
    m_post = m_post.cuda()
    m.train(False)
    m_post.train(False)
    
    pbar = tqdm(range(args.max_len))
    with t.no_grad():
        for i in pbar:
            pos_mel = t.arange(1,mel_input.size(1)+1).unsqueeze(0).cuda()
            mel_pred, postnet_pred, attn, stop_token, _, attn_dec = m.forward(text, mel_input, pos_text, pos_mel)
            mel_input = t.cat([t.zeros([1,1, 80]).cuda(),postnet_pred], dim=1)

        mag_pred = m_post.forward(postnet_pred)
        
    wav = spectrogram2wav(mag_pred.squeeze(0).cpu().numpy())
    write(hp.sample_path + "/test.wav", hp.sr, wav)
Esempio n. 3
0
def synthesis(text, num):
    m = Model()
    # m_post = ModelPostNet()

    m.load_state_dict(load_checkpoint(num, "transformer"))
    # m_post.load_state_dict(load_checkpoint(args.restore_step2, "postnet"))

    text = np.asarray(text_to_sequence(text, [hp.cleaners]))
    text = t.LongTensor(text).unsqueeze(0)
    text = text.cuda()
    mel_input = t.zeros([1, 1, 80]).cuda()
    pos_text = t.arange(1, text.size(1) + 1).unsqueeze(0)
    pos_text = pos_text.cuda()

    m = m.cuda()
    # m_post = m_post.cuda()
    m.train(False)
    # m_post.train(False)

    # pbar = tqdm(range(args.max_len))
    with t.no_grad():
        for _ in range(1000):
            pos_mel = t.arange(1, mel_input.size(1) + 1).unsqueeze(0).cuda()
            mel_pred, postnet_pred, attn, stop_token, _, attn_dec = m.forward(
                text, mel_input, pos_text, pos_mel)
            mel_input = t.cat([mel_input, postnet_pred[:, -1:, :]], dim=1)

        # mag_pred = m_post.forward(postnet_pred)

    # wav = spectrogram2wav(mag_pred.squeeze(0).cpu().numpy())
    mel_postnet = postnet_pred[0].cpu().numpy().T
    plot_data([mel_postnet for _ in range(2)])
    wav = audio.inv_mel_spectrogram(mel_postnet)
    wav = wav[0:audio.find_endpoint(wav)]
    audio.save_wav(wav, "result.wav")
Esempio n. 4
0
def synthesis(text, args):
    m = Model()
    m_post = ModelPostNet()

    m.load_state_dict(load_checkpoint(args.step1, "transformer"))
    m_post.load_state_dict(load_checkpoint(args.step2, "postnet"))

    text = np.asarray(text_to_sequence(text, [hp.cleaners]))
    text = torch.LongTensor(text).unsqueeze(0)
    text = text.cuda()

    mel_input = np.load('3_0.pt.npy')

    pos_text = torch.arange(1, text.size(1) + 1).unsqueeze(0)
    pos_text = pos_text.cuda()

    m = m.cuda()
    m_post = m_post.cuda()
    m.train(False)
    m_post.train(False)

    with torch.no_grad():
        mag_pred = m_post.forward(
            torch.from_numpy(mel_input).unsqueeze(0).cuda())

    wav = spectrogram2wav(mag_pred.squeeze(0).cpu().numpy())
    write(hp.sample_path + "/test.wav", hp.sr, wav)
Esempio n. 5
0
def synthesis(text, args, num):
    m = Model()
    m_post = ModelPostNet()

    m.load_state_dict(load_checkpoint(args.restore_step1, "transformer"))
    m_post.load_state_dict(load_checkpoint(args.restore_step2, "postnet"))

    text = np.asarray(text_to_sequence(text, [hp.cleaners]))
    text = t.LongTensor(text).unsqueeze(0)
    text = text.cuda()
    mel_input = t.zeros([1, 1, 80]).cuda()
    pos_text = t.arange(1, text.size(1) + 1).unsqueeze(0)
    pos_text = pos_text.cuda()

    m = m.cuda()
    m_post = m_post.cuda()
    m.train(False)
    m_post.train(False)

    pbar = tqdm(range(args.max_len))
    with t.no_grad():
        for i in pbar:
            pos_mel = t.arange(1, mel_input.size(1) + 1).unsqueeze(0).cuda()
            mel_pred, postnet_pred, attn, stop_token, _, attn_dec = m.forward(
                text, mel_input, pos_text, pos_mel)
            # print('mel_pred==================',mel_pred.shape)
            # print('postnet_pred==================', postnet_pred.shape)
            mel_input = t.cat([mel_input, postnet_pred[:, -1:, :]], dim=1)
            #print(postnet_pred[:, -1:, :])
            #print(t.argmax(attn[1][1][i]).item())
            #print('mel_input==================', mel_input.shape)

    # #直接用真实mel测试postnet效果
    #aa = t.from_numpy(np.load('D:\SSHdownload\\000101.pt.npy')).cuda().unsqueeze(0)
    # # print(aa.shape)
    mag_pred = m_post.forward(postnet_pred)
    #real_mag = t.from_numpy((np.load('D:\SSHdownload\\003009.mag.npy'))).cuda().unsqueeze(dim=0)
    #wav = spectrogram2wav(postnet_pred)

    #print('shappe============',attn[2][0].shape)
    # count = 0
    # for j in range(4):
    #     count += 1
    #     attn1 = attn[0][j].cpu()
    #     plot_alignment(attn1, path='./training_loss/'+ str(args.restore_step1)+'_'+str(count)+'_'+'S'+str(num)+'.png', title='sentence'+str(num))

    attn1 = attn[0][1].cpu()
    plot_alignment(attn1,
                   path='./training_loss/' + str(args.restore_step1) + '_' +
                   'S' + str(num) + '.png',
                   title='sentence' + str(num))

    wav = spectrogram2wav(mag_pred.squeeze(0).cpu().detach().numpy())
    write(
        hp.sample_path + '/' + str(args.restore_step1) + '-' + "test" +
        str(num) + ".wav", hp.sr, wav)
Esempio n. 6
0
def ini_model_train(opt):
    X_ini, y_ini, X_test, y_test, X_train_All, y_train_All = ini_model(opt)
    mod = Model().to(device)
    optimizer = optim.SGD(mod.parameters(), lr=opt.ini_lr)
    criterion = nn.CrossEntropyLoss()
    num_batches_train = X_ini.shape[0] // opt.ini_batch_size
    mod.train()
    for i in range(opt.ini_epoch):
        loss = 0
        for j in range(num_batches_train):
            slce = get_slice(j, opt.ini_batch_size)
            X_tra = torch.from_numpy(X_ini[slce]).float().to(device)
            Y_tra = torch.from_numpy(y_ini[slce]).long().to(device)
            optimizer.zero_grad()
            out = mod(X_tra)
            batch_loss = criterion(out, Y_tra)
            batch_loss.backward()
            optimizer.step()
            loss += batch_loss
        mod.eval()
        acc = test_without_dropout(X_test, y_test, mod, device)
        print('\n[{}/{} epoch], training loss:{:.4f}, test accuracy is:{} \n'.
              format(i, opt.ini_epoch,
                     loss.item() / num_batches_train, acc))
        if i + 1 == opt.ini_epoch:
            for d in range(opt.num_dev):
                torch.save(
                    {
                        'epoch': i,
                        'model_state_dict': mod.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                        'loss': loss.item()
                    },
                    os.path.join(opt.ini_model_path, 'device' + str(d),
                                 "ini.model.pth.tar"))
            torch.save(
                {
                    'epoch': i,
                    'model_state_dict': mod.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'loss': loss.item()
                }, opt.ini_model_path)
    return X_test, y_test, X_train_All, y_train_All
Esempio n. 7
0
def ini_train(X_ini, y_ini, X_te, y_te, epochs, paths, device, batch_size, lr,
              momentum, arr_drop):
    mod = Model(arr_drop).to(device)
    optimizer = optim.SGD(mod.parameters(), lr=lr, momentum=momentum)
    criterion = nn.CrossEntropyLoss()
    #batch_size = 200
    num_batches_train = X_ini.shape[0] // batch_size
    print("number of batch ", num_batches_train)
    mod.train()
    for i in range(epochs):
        loss = 0
        for j in range(num_batches_train):
            slce = get_slice(j, batch_size)
            X_tra = torch.from_numpy(X_ini[slce]).float().to(device)
            Y_tra = torch.from_numpy(y_ini[slce]).long().to(device)
            optimizer.zero_grad()
            out = mod(X_tra)
            batch_loss = criterion(out, Y_tra)
            batch_loss.backward()
            optimizer.step()
            loss += batch_loss
        mod.eval()
        with torch.no_grad():
            X_va = torch.from_numpy(X_te).float().to(device)
            Y_va = torch.from_numpy(y_te).long().to(device)
            output = mod(X_va)
            preds = torch.max(output, 1)[1]
            acc = accuracy_score(Y_va, preds)
        print('\n[{}/{} epoch], training loss:{:.4f}, test accuracy is:{} \n'.
              format(i, epochs,
                     loss.item() / num_batches_train, acc))
    if i + 1 == epochs:
        for path in paths:
            torch.save(
                {
                    'epoch': i,
                    'model_state_dict': mod.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'loss': loss.item()
                }, os.path.join(path, "ini.model.pth.tar"))
    return mod
Esempio n. 8
0
def model(dataset, model_name=None, device=None, train=True):
    """加载模型"""
    device = device or torch.device(
        "cuda" if torch.cuda.is_available() else "cpu")
    net = Model(vocab_size=dataset.vocab_size,
                embedding_dim=config.embedding_dim,
                output_size=dataset.target_vocab_size,
                encoder_hidden_size=config.encoder_hidden_size,
                decoder_hidden_size=config.decoder_hidden_size,
                encoder_layers=config.encoder_layers,
                decoder_layers=config.decoder_layers,
                dropout=config.dropout,
                embedding_weights=dataset.vector_weights,
                device=device)
    if model_name:  # 如果指定了模型名称, 就加载对应的模型
        pre_trained_state_dict = torch.load(FILE_PATH + config.model_path +
                                            model_name,
                                            map_location=device)
        state_dict = net.state_dict()
        state_dict.update(pre_trained_state_dict)
        net.load_state_dict(state_dict)
    net.train() if train else net.eval()
    return net
Esempio n. 9
0
def synthesis(args):
    m = Model()
    m_post = ModelPostNet()
    m_stop = ModelStopToken()
    m.load_state_dict(load_checkpoint(args.restore_step1, "transformer"))
    m_stop.load_state_dict(load_checkpoint(args.restore_step3, "stop_token"))
    m_post.load_state_dict(load_checkpoint(args.restore_step2, "postnet"))

    m=m.cuda()
    m_post = m_post.cuda()
    m_stop = m_stop.cuda()
    m.train(False)
    m_post.train(False)
    m_stop.train(False)
    test_dataset = get_dataset(hp.test_data_csv)
    test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn_transformer, drop_last=True, num_workers=1)
    ref_dataset = get_dataset(hp.test_data_csv)
    ref_dataloader = DataLoader(ref_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn_transformer, drop_last=True, num_workers=1)

    writer = get_writer(hp.checkpoint_path, hp.log_directory)

    ref_dataloader_iter = iter(ref_dataloader)
    for i, data in enumerate(test_dataloader):
        character, mel, mel_input, pos_text, pos_mel, text_length, mel_length, fname = data
        ref_character, ref_mel, ref_mel_input, ref_pos_text, ref_pos_mel, ref_text_length, ref_mel_length, ref_fname = next(ref_dataloader_iter)
        stop_tokens = t.abs(pos_mel.ne(0).type(t.float) - 1)
        mel_input = t.zeros([1,1,80]).cuda()
        stop=[]
        character = character.cuda()
        mel = mel.cuda()
        mel_input = mel_input.cuda()
        pos_text = pos_text.cuda()
        pos_mel = pos_mel.cuda()
        ref_character = ref_character.cuda()
        ref_mel = ref_mel.cuda()
        ref_mel_input = ref_mel_input.cuda()
        ref_pos_text = ref_pos_text.cuda()
        ref_pos_mel = ref_pos_mel.cuda()

        with t.no_grad():
            start=time.time()
            for i in range(args.max_len):
                pos_mel = t.arange(1,mel_input.size(1)+1).unsqueeze(0).cuda()
                mel_pred, postnet_pred, attn_probs, decoder_output, attns_enc, attns_dec, attns_style = m.forward(character, mel_input, pos_text, pos_mel, ref_mel, ref_pos_mel)
                stop_token = m_stop.forward(decoder_output)
                mel_input = t.cat([mel_input, postnet_pred[:,-1:,:]], dim=1)
                stop.append(t.sigmoid(stop_token).squeeze(-1)[0,-1])
                if stop[-1] > 0.5:
                    print("stop token at " + str(i) + " is :", stop[-1])
                    print("model inference time: ", time.time() - start)
                    break
            if stop[-1] == 0:
                continue
            mag_pred = m_post.forward(postnet_pred)
            inf_time = time.time() - start
            print("inference time: ", inf_time)

        wav = spectrogram2wav(mag_pred.squeeze(0).cpu().numpy())
        print("rtx : ", (len(wav)/hp.sr) / inf_time)
        wav_path = os.path.join(hp.sample_path, 'wav')
        if not os.path.exists(wav_path):
            os.makedirs(wav_path)
        write(os.path.join(wav_path, "text_{}_ref_{}_synth.wav".format(fname, ref_fname)), hp.sr, wav)
        print("written as text{}_ref_{}_synth.wav".format(fname, ref_fname))
        attns_enc_new=[]
        attns_dec_new=[]
        attn_probs_new=[]
        attns_style_new=[]
        for i in range(len(attns_enc)):
            attns_enc_new.append(attns_enc[i].unsqueeze(0))
            attns_dec_new.append(attns_dec[i].unsqueeze(0))
            attn_probs_new.append(attn_probs[i].unsqueeze(0))
            attns_style_new.append(attns_style[i].unsqueeze(0))
        attns_enc = t.cat(attns_enc_new, 0)
        attns_dec = t.cat(attns_dec_new, 0)
        attn_probs = t.cat(attn_probs_new, 0)
        attns_style = t.cat(attns_style_new, 0)

        attns_enc = attns_enc.contiguous().view(attns_enc.size(0), 1, hp.n_heads, attns_enc.size(2), attns_enc.size(3))
        attns_enc = attns_enc.permute(1,0,2,3,4)
        attns_dec = attns_dec.contiguous().view(attns_dec.size(0), 1, hp.n_heads, attns_dec.size(2), attns_dec.size(3))
        attns_dec = attns_dec.permute(1,0,2,3,4)
        attn_probs = attn_probs.contiguous().view(attn_probs.size(0), 1, hp.n_heads, attn_probs.size(2), attn_probs.size(3))
        attn_probs = attn_probs.permute(1,0,2,3,4)
        attns_style = attns_style.contiguous().view(attns_style.size(0), 1, hp.n_heads, attns_style.size(2), attns_style.size(3))
        attns_style = attns_style.permute(1,0,2,3,4)

        save_dir = os.path.join(hp.sample_path, 'figure', "text_{}_ref_{}_synth.wav".format(fname, ref_fname))
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        writer.add_alignments(attns_enc.detach().cpu(), attns_dec.detach().cpu(), attn_probs.detach().cpu(), attns_style.detach().cpu(), mel_length, text_length, args.restore_step1, 'Validation', save_dir)
Esempio n. 10
0
                             betas=(0.9, 0.999),
                             eps=1e-08,
                             weight_decay=0.001,
                             amsgrad=False)

# training
# print(model.state_dict())
model = model.float()
loss_train = []
loss_val = []
latent = np.empty((1, 16, 16, 128))

for epoch in range(num_epochs):

    # Train
    model.train()

    # Sum of losses from this epoch
    epoch_loss_train = 0

    for i, data in enumerate(train_loader):

        # Zeros the gradients of all optimized torch.Tensors
        optimizer.zero_grad()

        # Load data to tensors
        img = data['image']
        position_target = data['point_map']
        img = img.to(device=device, dtype=torch.float32)
        position_target = position_target.to(device=device)
Esempio n. 11
0
def synthesis(args):
    m = Model()
    m.load_state_dict(load_checkpoint(args.restore_step1, "transformer"))
    m = m.cuda()
    m.train(False)
    vocoder = SmartVocoder(Hyperparameters(parse_args()))
    vocoder.load_state_dict(
        t.load('./mel2audio/merged_STFT_checkpoint.pth')["state_dict"])
    vocoder = vocoder.cuda()
    vocoder.eval()
    with open('./hifi_gan/config.json') as f:
        data = f.read()
    json_config = json.loads(data)
    h = AttrDict(json_config)
    hifi_gan = Generator(h).cuda()
    state_dict_g = t.load('./hifi_gan/g_00334000', map_location='cuda')
    hifi_gan.load_state_dict(state_dict_g['generator'])
    hifi_gan.eval()
    hifi_gan.remove_weight_norm()

    test_dataset = get_dataset(hp.test_data_csv)
    test_dataloader = DataLoader(test_dataset,
                                 batch_size=1,
                                 shuffle=False,
                                 collate_fn=collate_fn_transformer,
                                 drop_last=True,
                                 num_workers=1)
    ref_dataset = get_dataset(hp.test_data_csv_shuf)
    ref_dataloader = DataLoader(ref_dataset,
                                batch_size=1,
                                shuffle=False,
                                collate_fn=collate_fn_transformer,
                                drop_last=True,
                                num_workers=1)

    writer = get_writer(hp.checkpoint_path, hp.log_directory)

    mel_basis = t.from_numpy(
        librosa.filters.mel(hp.sr, hp.n_fft, hp.n_mels, 50,
                            11000)).unsqueeze(0)  # (n_mels, 1+n_fft//2)

    ref_dataloader_iter = iter(ref_dataloader)
    _, ref_mel, _, _, _, ref_pos_mel, _, _, ref_fname = next(
        ref_dataloader_iter)

    for i, data in enumerate(test_dataloader):
        character, _, _, _, pos_text, _, text_length, _, fname = data
        mel_input = t.zeros([1, 1, 80]).cuda()
        character = character.cuda()
        ref_mel = ref_mel.cuda()
        mel_input = mel_input.cuda()
        pos_text = pos_text.cuda()
        with t.no_grad():
            start = time.time()
            memory, c_mask, attns_enc, duration_mask = m.encoder(character,
                                                                 pos=pos_text)
            style, coarse_emb = m.ref_encoder(ref_mel)
            memory = t.cat((memory, coarse_emb.expand(-1, memory.size(1), -1)),
                           -1)
            memory = m.memory_coarse_layer(memory)
            duration_predictor_output = m.duration_predictor(
                memory, duration_mask)
            duration = t.ceil(duration_predictor_output)
            duration = duration * duration_mask
            #            max_length = t.sum(duration).type(t.LongTensor)
            #            print("length : ", max_length)

            monotonic_interpolation, pos_mel_, weights = m.length_regulator(
                memory, duration, duration_mask)
            kv_mask = t.zeros([1, mel_input.size(1),
                               character.size(1)]).cuda()  # B, t', N
            kv_mask[:, :, :3] = 1
            kv_mask = kv_mask.eq(0)
            stop_flag = False
            ctr = 0
            for j in range(1200):
                pos_mel = t.arange(1,
                                   mel_input.size(1) + 1).unsqueeze(0).cuda()
                mel_pred, postnet_pred, attn_probs, decoder_output, attns_dec, attns_style = m.decoder(
                    memory,
                    style,
                    mel_input,
                    c_mask,
                    pos=pos_mel,
                    ref_pos=ref_pos_mel,
                    mono_inter=monotonic_interpolation[:, :mel_input.shape[1]],
                    kv_mask=kv_mask)
                mel_input = t.cat([mel_input, postnet_pred[:, -1:, :]], dim=1)
                #                print("j", j, "mel_input", mel_input.shape)
                if stop_flag and ctr == 10:
                    break
                elif stop_flag:
                    ctr += 1
                kv_mask, stop_flag = update_kv_mask(
                    kv_mask, attn_probs)  # B, t', N --> B, t'+1, N
            postnet_pred = t.cat((postnet_pred,
                                  t.zeros(postnet_pred.size(0), 5,
                                          postnet_pred.size(-1)).cuda()), 1)
            gen_length = mel_input.size(1)
            #            print("gen_length", gen_length)
            post_linear = m.postnet(postnet_pred)
            post_linear = resample(post_linear,
                                   seq_len=mel_input.size(1),
                                   scale=args.rhythm_scale)
            postnet_pred = resample(mel_input,
                                    seq_len=mel_input.size(1),
                                    scale=args.rhythm_scale)
            inf_time = time.time() - start
            print("inference time: ", inf_time)
            #            print("speech_rate: ", len(postnet_pred[0])/len(character[0]))

            postnet_pred_v = postnet_pred.transpose(2, 1)
            postnet_pred_v = (postnet_pred_v * 100 + 20 - 100) / 20
            B, C, T = postnet_pred_v.shape
            z = t.randn(1, 1, T * hp.hop_length).cuda()
            z = z * 0.6  # Temp
            t.cuda.synchronize()
            timestemp = time.time()
            with t.no_grad():
                y_gen = vocoder.reverse(z, postnet_pred_v).squeeze()
            t.cuda.synchronize()
            print('{} seconds'.format(time.time() - timestemp))
            wav = y_gen.to(t.device("cpu")).data.numpy()
            wav = np.pad(
                wav, [0, 4800], mode='constant',
                constant_values=0)  #pad 0 for 0.21 sec silence at the end

            post_linear_v = post_linear.transpose(1, 2)
            post_linear_v = 10**((post_linear_v * 100 + 20 - 100) / 20)
            mel_basis = mel_basis.repeat(post_linear_v.shape[0], 1, 1)
            post_linear_mel_v = t.log10(t.bmm(mel_basis.cuda(), post_linear_v))
            B, C, T = post_linear_mel_v.shape
            z = t.randn(1, 1, T * hp.hop_length).cuda()
            z = z * 0.6  # Temp
            t.cuda.synchronize()
            timestemp = time.time()
            with t.no_grad():
                y_gen_linear = vocoder.reverse(z, post_linear_mel_v).squeeze()
            t.cuda.synchronize()
            wav_linear = y_gen_linear.to(t.device("cpu")).data.numpy()
            wav_linear = np.pad(
                wav_linear, [0, 4800], mode='constant',
                constant_values=0)  #pad 0 for 0.21 sec silence at the end

            wav_hifi = hifi_gan(post_linear_mel_v).squeeze().clamp(
                -1, 1).detach().cpu().numpy()
            wav_hifi = np.pad(
                wav_hifi, [0, 4800], mode='constant',
                constant_values=0)  #pad 0 for 0.21 sec silence at the end

        mel_path = os.path.join(hp.sample_path + '_' + str(args.rhythm_scale),
                                'mel')
        if not os.path.exists(mel_path):
            os.makedirs(mel_path)
        np.save(
            os.path.join(
                mel_path,
                'text_{}_ref_{}_synth_{}.mel'.format(i, ref_fname,
                                                     str(args.rhythm_scale))),
            postnet_pred.cpu())

        linear_path = os.path.join(
            hp.sample_path + '_' + str(args.rhythm_scale), 'linear')
        if not os.path.exists(linear_path):
            os.makedirs(linear_path)
        np.save(
            os.path.join(
                linear_path, 'text_{}_ref_{}_synth_{}.linear'.format(
                    i, ref_fname, str(args.rhythm_scale))), post_linear.cpu())

        wav_path = os.path.join(hp.sample_path + '_' + str(args.rhythm_scale),
                                'wav')
        if not os.path.exists(wav_path):
            os.makedirs(wav_path)
        write(
            os.path.join(
                wav_path,
                "text_{}_ref_{}_synth_{}.wav".format(i, ref_fname,
                                                     str(args.rhythm_scale))),
            hp.sr, wav)
        print("rtx : ", (len(wav) / hp.sr) / inf_time)

        wav_linear_path = os.path.join(
            hp.sample_path + '_' + str(args.rhythm_scale), 'wav_linear')
        if not os.path.exists(wav_linear_path):
            os.makedirs(wav_linear_path)
        write(
            os.path.join(
                wav_linear_path,
                "text_{}_ref_{}_synth_{}.wav".format(i, ref_fname,
                                                     str(args.rhythm_scale))),
            hp.sr, wav_linear)

        wav_hifi_path = os.path.join(
            hp.sample_path + '_' + str(args.rhythm_scale), 'wav_hifi')
        if not os.path.exists(wav_hifi_path):
            os.makedirs(wav_hifi_path)
        write(
            os.path.join(
                wav_hifi_path,
                "text_{}_ref_{}_synth_{}.wav".format(i, ref_fname,
                                                     str(args.rhythm_scale))),
            hp.sr, wav_hifi)

        show_weights = weights.contiguous().view(weights.size(0), 1, 1,
                                                 weights.size(1),
                                                 weights.size(2))
        attns_enc_new = []
        attns_dec_new = []
        attn_probs_new = []
        attns_style_new = []
        for i in range(len(attns_enc)):
            attns_enc_new.append(attns_enc[i].unsqueeze(0))
            attns_dec_new.append(attns_dec[i].unsqueeze(0))
            attn_probs_new.append(attn_probs[i].unsqueeze(0))
            attns_style_new.append(attns_style[i].unsqueeze(0))
        attns_enc = t.cat(attns_enc_new, 0)
        attns_dec = t.cat(attns_dec_new, 0)
        attn_probs = t.cat(attn_probs_new, 0)
        attns_style = t.cat(attns_style_new, 0)

        attns_enc = attns_enc.contiguous().view(attns_enc.size(0), 1,
                                                hp.n_heads, attns_enc.size(2),
                                                attns_enc.size(3))
        attns_enc = attns_enc.permute(1, 0, 2, 3, 4)
        attns_dec = attns_dec.contiguous().view(attns_dec.size(0), 1,
                                                hp.n_heads, attns_dec.size(2),
                                                attns_dec.size(3))
        attns_dec = attns_dec.permute(1, 0, 2, 3, 4)
        attn_probs = attn_probs.contiguous().view(attn_probs.size(0),
                                                  1, hp.n_heads,
                                                  attn_probs.size(2),
                                                  attn_probs.size(3))
        attn_probs = attn_probs.permute(1, 0, 2, 3, 4)
        attns_style = attns_style.contiguous().view(attns_style.size(0), 1,
                                                    hp.n_heads,
                                                    attns_style.size(2),
                                                    attns_style.size(3))
        attns_style = attns_style.permute(1, 0, 2, 3, 4)

        save_dir = os.path.join(
            hp.sample_path + '_' + str(args.rhythm_scale), 'figure',
            "text_{}_ref_{}_synth_{}.wav".format(fname, ref_fname,
                                                 str(args.rhythm_scale)))
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        writer.add_alignments(attns_enc.detach().cpu(),
                              attns_dec.detach().cpu(),
                              attn_probs.detach().cpu(),
                              attns_style.detach().cpu(),
                              show_weights.detach().cpu(),
                              [t.tensor(gen_length).type(t.LongTensor)],
                              text_length, args.restore_step1, 'Inference',
                              save_dir)
Esempio n. 12
0
def random_run(acquisition_iterations, X_Pool, y_Pool, pool_subset,
               dropout_iterations, nb_classes, Queries, X_test, y_test, rep,
               X_old, y_old, device, itr, cuda, g):
    mod = Model().to(device)
    if cuda:
        cp = torch.load(rep)
        print("\n ********load gpu version******* \n")
    else:
        cp = torch.load(rep, map_location='cpu')
    mod.load_state_dict(cp['model_state_dict'])
    optimizer = optim.Adam(mod.parameters(), lr=0.001,
                           weight_decay=0.5)  #,weight_decay=0.5
    #optimizer = optim.SGD(mod.parameters(), lr=0.001,weight_decay=0.5)
    optimizer.load_state_dict(cp['optimizer_state_dict'])
    criterion = nn.CrossEntropyLoss()
    X_train = np.empty([0, 1, 28, 28])
    y_train = np.empty([
        0,
    ])
    AA = []
    losses_train = []
    #acc = test(test_loader,mod,device,cuda)
    acc = test(X_test, y_test, mod, device, cuda)
    AA.append(acc)
    print('initial test accuracy: ', acc)
    for i in range(acquisition_iterations):
        pool_subset_dropout = np.asarray(
            random.sample(range(0, X_Pool.shape[0]), pool_subset))
        X_Pool_Dropout = X_Pool[pool_subset_dropout, :, :, :]
        y_Pool_Dropout = y_Pool[pool_subset_dropout]

        x_pool_index = np.random.choice(X_Pool_Dropout.shape[0],
                                        Queries,
                                        replace=False)
        Pooled_X = X_Pool_Dropout[x_pool_index, :, :, :]
        Pooled_Y = y_Pool_Dropout[x_pool_index]

        delete_Pool_X = np.delete(X_Pool, (pool_subset_dropout), axis=0)
        delete_Pool_Y = np.delete(y_Pool, (pool_subset_dropout), axis=0)

        delete_Pool_X_Dropout = np.delete(X_Pool_Dropout, (x_pool_index),
                                          axis=0)
        delete_Pool_Y_Dropout = np.delete(y_Pool_Dropout, (x_pool_index),
                                          axis=0)

        X_Pool = np.concatenate((delete_Pool_X, delete_Pool_X_Dropout), axis=0)
        y_Pool = np.concatenate((delete_Pool_Y, delete_Pool_Y_Dropout), axis=0)
        print('updated pool size is ', X_Pool.shape[0])

        X_train = np.concatenate((X_train, Pooled_X), axis=0)
        y_train = np.concatenate((y_train, Pooled_Y), axis=0)
        print('number of data points from pool', X_train.shape[0])

        batch_size = 100
        X = np.vstack((X_old, Pooled_X))
        y = np.hstack((y_old, Pooled_Y))
        X, y = shuffle(X, y)
        num_batch = X.shape[0] // batch_size
        print("number of batch: ", num_batch)
        mod.train()
        for h in range(itr):
            losses = 0
            for j in range(num_batch):
                slce = get_slice(j, batch_size)
                X_fog_ = torch.from_numpy(X[slce]).float().to(device)
                y_fog_ = torch.from_numpy(y[slce]).long().to(device)
                optimizer.zero_grad()
                out = mod(X_fog_)
                train_loss = criterion(out, y_fog_)
                losses += train_loss
                train_loss.backward()
                optimizer.step()
            losses_train.append(losses.item() / num_batch)
        acc = test(X_test, y_test, mod, device, cuda)
        print('test accuracy: ', acc)
        AA.append(acc)
    torch.save(
        {
            'model_state_dict': mod.state_dict(),
            'optimizer_state_dict': optimizer.state_dict()
        }, g)
    return AA, mod, X_train, y_train, losses_train, optimizer
Esempio n. 13
0
def main(args: argparse.Namespace):
    # Load input data
    with open(args.train_metadata, 'r') as f:
        train_posts = json.load(f)

    with open(args.val_metadata, 'r') as f:
        val_posts = json.load(f)

    # Load labels
    labels = {}
    with open(args.label_intent, 'r') as f:
        intent_labels = json.load(f)
        labels['intent'] = {}
        for label in intent_labels:
            labels['intent'][label] = len(labels['intent'])

    with open(args.label_semiotic, 'r') as f:
        semiotic_labels = json.load(f)
        labels['semiotic'] = {}
        for label in semiotic_labels:
            labels['semiotic'][label] = len(labels['semiotic'])

    with open(args.label_contextual, 'r') as f:
        contextual_labels = json.load(f)
        labels['contextual'] = {}
        for label in contextual_labels:
            labels['contextual'][label] = len(labels['contextual'])

    # Build dictionary from training set
    train_captions = []
    for post in train_posts:
        train_captions.append(post['orig_caption'])
    dictionary = Dictionary(tokenizer_method="TreebankWordTokenizer")
    dictionary.build_dictionary_from_captions(train_captions)

    # Set up torch device
    if 'cuda' in args.device and torch.cuda.is_available():
        device = torch.device(args.device)
        kwargs = {'pin_memory': True}
    else:
        device = torch.device('cpu')
        kwargs = {}

    # Set up number of workers
    num_workers = min(multiprocessing.cpu_count(), args.num_workers)

    # Set up data loaders differently based on the task
    # TODO: Extend to ELMo + word2vec etc.
    if args.type == 'image_only':
        train_dataset = ImageOnlyDataset(train_posts, labels)
        val_dataset = ImageOnlyDataset(val_posts, labels)
        train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                        batch_size=args.batch_size,
                                                        shuffle=args.shuffle,
                                                        num_workers=num_workers,
                                                        collate_fn=collate_fn_pad_image_only,
                                                        **kwargs)
        val_data_loader = torch.utils.data.DataLoader(val_dataset,
                                                    batch_size=1,
                                                    num_workers=num_workers,
                                                    collate_fn=collate_fn_pad_image_only,
                                                    **kwargs)
    elif args.type == 'image_text':
        train_dataset = ImageTextDataset(train_posts, labels, dictionary)
        val_dataset = ImageTextDataset(val_posts, labels, dictionary)
        train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                        batch_size=args.batch_size,
                                                        shuffle=args.shuffle,
                                                        num_workers=num_workers,
                                                        collate_fn=collate_fn_pad_image_text,
                                                        **kwargs)
        val_data_loader = torch.utils.data.DataLoader(val_dataset,
                                                    batch_size=1,
                                                    num_workers=num_workers,
                                                    collate_fn=collate_fn_pad_image_text,
                                                    **kwargs)
    elif args.type == 'text_only':
        train_dataset = TextOnlyDataset(train_posts, labels, dictionary)
        val_dataset = TextOnlyDataset(val_posts, labels, dictionary)
        train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                        batch_size=args.batch_size,
                                                        shuffle=args.shuffle,
                                                        num_workers=num_workers,
                                                        collate_fn=collate_fn_pad_text_only,
                                                        **kwargs)
        val_data_loader = torch.utils.data.DataLoader(val_dataset,
                                                    batch_size=1,
                                                    num_workers=num_workers,
                                                    collate_fn=collate_fn_pad_text_only,
                                                    **kwargs)

    # Set up the model
    model = Model(vocab_size=dictionary.size()).to(device)

    # Set up an optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_scheduler_step_size, gamma=args.lr_scheduler_gamma) # decay by 0.1 every 15 epochs

    # Set up loss function
    loss_fn = torch.nn.CrossEntropyLoss()

    # Setup tensorboard
    if args.tensorboard:
        writer = tensorboard.SummaryWriter(log_dir=args.log_dir + "/" + args.name, flush_secs=1)
    else:
        writer = None

    # Training loop
    if args.classification == 'intent':
        keys = ['intent']
    elif args.classification == 'semiotic':
        keys = ['semiotic']
    elif args.classification == 'contextual':
        keys = ['contextual']
    elif args.classification == 'all':
        keys = ['intent', 'semiotic', 'contextual']
    else:
        raise ValueError("args.classification doesn't exist.")
    best_auc_ovr = 0.0
    best_auc_ovo = 0.0
    best_acc = 0.0
    best_model = None
    best_optimizer = None
    best_scheduler = None
    for epoch in range(args.epochs):
        for mode in ["train", "eval"]:
            # Set up a progress bar
            if mode == "train":
                pbar = tqdm.tqdm(enumerate(train_data_loader), total=len(train_data_loader))
                model.train()
            else:
                pbar = tqdm.tqdm(enumerate(val_data_loader), total=len(val_data_loader))
                model.eval()

            total_loss = 0
            label = dict.fromkeys(keys, np.array([], dtype=np.int))
            pred = dict.fromkeys(keys, None)
            for _, batch in pbar:
                if 'caption' not in batch:
                    caption_data = None
                else:
                    caption_data = batch['caption'].to(device)
                if 'image' not in batch:
                    image_data = None
                else:
                    image_data = batch['image'].to(device)
                label_batch = {}
                for key in keys:
                    label_batch[key] = batch['label'][key].to(device)
                    
                if mode == "train":
                    model.zero_grad()

                pred_batch = model(image_data, caption_data)
                
                for key in keys:
                    label[key] = np.concatenate((label[key], batch['label'][key].cpu().numpy()))
                    x = pred_batch[key].detach().cpu().numpy()
                    x_max = np.max(x, axis=1).reshape(-1, 1)
                    z = np.exp(x - x_max)
                    prediction_scores = z / np.sum(z, axis=1).reshape(-1, 1)
                    if pred[key] is not None:
                        pred[key] = np.vstack((pred[key], prediction_scores))
                    else:
                        pred[key] = prediction_scores
                       
                loss_batch = {}
                loss = None
                for key in keys:
                    loss_batch[key] = loss_fn(pred_batch[key], label_batch[key])
                    if loss is None:
                        loss = loss_batch[key]
                    else:
                        loss += loss_bath[key] 

                total_loss += loss.item()

                if mode == "train":
                    loss.backward()
                    optimizer.step()

            # Terminate the progress bar
            pbar.close()
            
            # Update lr scheduler
            if mode == "train":
                scheduler.step()

            for key in keys:
                auc_score_ovr = roc_auc_score(label[key], pred[key], multi_class='ovr') # pylint: disable-all
                auc_score_ovo = roc_auc_score(label[key], pred[key], multi_class='ovo') # pylint: disable-all
                accuracy = accuracy_score(label[key], np.argmax(pred[key], axis=1))
                print("[{} - {}] [AUC-OVR={:.3f}, AUC-OVO={:.3f}, ACC={:.3f}]".format(mode, key, auc_score_ovr, auc_score_ovo, accuracy))
                
                if mode == "eval":
                    best_auc_ovr = max(best_auc_ovr, auc_score_ovr)
                    best_auc_ovo = max(best_auc_ovo, auc_score_ovo)
                    best_acc = max(best_acc, accuracy)
                    best_model = model
                    best_optimizer = optimizer
                    best_scheduler = scheduler
                
                if writer:
                    writer.add_scalar('AUC-OVR/{}-{}'.format(mode, key), auc_score_ovr, epoch)
                    writer.add_scalar('AUC-OVO/{}-{}'.format(mode, key), auc_score_ovo, epoch)
                    writer.add_scalar('ACC/{}-{}'.format(mode, key), accuracy, epoch)
                    writer.flush()

            if writer:
                writer.add_scalar('Loss/{}'.format(mode), total_loss, epoch)
                writer.flush()

            print("[{}] Epoch {}: Loss = {}".format(mode, epoch, total_loss))

    hparam_dict = {
        'train_split': args.train_metadata,
        'val_split': args.val_metadata,
        'lr': args.lr,
        'epochs': args.epochs,
        'batch_size': args.batch_size,
        'num_workers': args.num_workers,
        'shuffle': args.shuffle,
        'lr_scheduler_gamma': args.lr_scheduler_gamma,
        'lr_scheduler_step_size': args.lr_scheduler_step_size,
    }
    metric_dict = {
        'AUC-OVR': best_auc_ovr,
        'AUC-OVO': best_auc_ovo,
        'ACC': best_acc
    }

    if writer:
        writer.add_hparams(hparam_dict=hparam_dict, metric_dict=metric_dict)
        writer.flush()
    
    Path(args.output_dir).mkdir(exist_ok=True)
    torch.save({
        'hparam_dict': hparam_dict,
        'metric_dict': metric_dict,
        'model_state_dict': model.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
        'scheduler_state_dict': scheduler.state_dict(),
    }, Path(args.output_dir) / '{}.pt'.format(args.name))